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ABSTRACT 

 

This study provides a qualitative classification of 107 daily rainfall series and evaluates 

spatiotemporal patterns in extreme precipitation by calculating climate indices at stations with 

records within the 1940–1999 period in the south of Portugal, where large areas have high 

susceptibility to desertification. Two procedures are proposed for the homogenization of 

climate time series. The direct sequential simulation and cosimulation algorithms, and the 

developed stochastic space-time models in particular, proved to be valuable procedures to 

deepen the knowledge on the space-time dynamics of precipitation extremes and to provide 

uncertainty assessments of the produced scenarios. The spatial patterns of precipitation 

extremes have become more homogenous during the last decades of the twentieth century, 

which is consistent with their decreasing relationship with elevation. On the other hand, 

climate variability is becoming greater in the time dimension. The most intense and more 

frequent rainfall events occur at areas of the Algarve region. The proposed simple aridity 

intensity index (AII) reflects increases in the magnitude of dryness. The southeast region is the 

most threatened by droughts and extreme dryness. Moreover, there is a tendency towards drier 

climatic conditions in coastal areas of the south and in the centre of the study region. 

 

Key-words: desertification; homogenization; precipitation extremes; space-time dynamics; 

climatic trends; uncertainty. 
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RESUMO 

 

Este estudo fornece uma classificação qualitativa de 107 séries diárias da precipitação e 

apresenta uma avaliação dos padrões espácio-temporais de valores extremos de precipitação 

baseada em índices climáticos – calculados para estações de monitorização com registos no 

período 1940–1999 no sul de Portugal, onde extensas áreas têm elevada susceptibilidade à 

desertificação. São propostos dois procedimentos para a homogeneização de séries temporais 

de elementos climáticos. Os algoritmos de simulação e co-simulação sequencial directa e, em 

particular, os modelos estocásticos espacio-temporais desenvolvidos, provaram ser 

procedimentos valiosos para aprofundar o conhecimento das dinâmicas espacio-temporais dos 

extremos de precipitação e para desenvolver indicadores de incerteza dos cenários 

produzidos. Os padrões espaciais das precipitações extremas tornaram-se mais homogéneos 

durante as últimas décadas do século vinte. Esta conclusão é consistente com a diminuição do 

seu relacionamento com a altitude. A variabilidade climática tem vindo a crescer na dimensão 

temporal. Os eventos de precipitações extremas mais intensos e frequentes ocorrem em áreas 

do Algarve. O índice AII proposto reflecte aumentos na magnitude da aridez. A região sudeste 

é a mais ameaçada por secas e aridez extrema. Observa-se também uma tendência para 

condições climáticas mais secas nas áreas costeiras do sul e no centro da região de estudo. 

 

Palavras-chave: desertificação; homogeneização; extremos de precipitação; dinâmicas 

espacio-temporais; tendências climáticas; incerteza. 
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ACRONYMS AND ABREVIATIONS 

 

ANN – Artificial neural network 

CAI – Climatologically aided interpolation 

CCD – Convention to Combat Desertification 

cdf – Cumulative distribution function 

CLIVAR – Climate Variability and Predictability project 

CCoK – Collocated cokriging 

coDSS – Direct sequential cosimulation 

CoK – Ordinary cokriging 

CV – Coefficient of variation 

DEM – Digital elevation model 

DSS – Direct sequential simulation 

EGLS – Estimated generalized least squares 

FAO – Food and Agriculture Organization of the United Nations 

GEV – Generalized Extreme Values distribution 

ECA – European Climate Assessment 

ESAI – Environmentally Sensitive Areas Index (defined within the framework of the 

MEDALUS project to assess Environmentally Sensitive Areas to desertification in Europe) 

GIS – Geographical information system 

IDW – Inverse distance weighting 

INAG – Portuguese Institute for Water (Instituto da Água) 

KED – Kriging with an external drift 

MAD – Median-absolute-deviation: is the median of the absolute values of the deviations of 

the sample values from the median 



 

 x

MAE – Mean absolute error 

MASH – Multiple analysis of series for homogenisation: method developed in the Hungarian 

Meteorological Service 

ME – Mean bias error 

NAO – North Atlantic Oscillation 

NAP – National Action Programme 

NDVI – Normalized Difference Vegetation Index 

OK – Ordinary kriging 

OLS – Ordinary least squares 

pdf – Probability density function 

RMSE – Root mean square error 

SGS – Sequential Gaussian simulation 

SIS – Sequential indicator simulation 

SK – Simple kriging 

SKlm – Simple kriging with varying local means 

SNHT – Standard normal homogeneity test 

SNIRH – National System of Water Resources Information (Sistema Nacional de Informação 

de Recursos Hídricos), managed by INAG 

STD – Standard-deviation 

SUR – Seemingly unrelated regression 

TAE – Temporal average of extremes series (moving average series of the extreme 

precipitation indices) 

TVE – Temporal variability of extremes series (moving standard-deviation series of the 

extreme precipitation indices) 

UNCCD – United Nations Convention to Combat Desertification 

UNEP – United Nations Environmental Program 

WMO – World Meteorological Organization 

WMO-CCL – World Meteorological Organization Commission for Climatology 
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1. Introduction 

1.1 Problem statement and rationale 

The most common definition of desertification is the adopted by the United Nations 

Convention to Combat Desertification (UNCCD 1994, p. 4) which defines desertification as 

“land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, 

including climatic variations and human activities”. 

Climate has an important role on desertification processes through its impacts on dryland soils 

and vegetation, on dryland hydrology and, ultimately, on human land use (Benson et al., 

1997; Geist and Lambin, 2004; Gringof and Mersha, 2006; Schreiber et al., 2008). The 

consequences of climate change, either caused by physical or anthropogenic factors, can be 

more significant at regional and local scales and have serious consequences (Correia, 2004). 

Therefore, research on climatic variability and trends is of major importance to understand 

desertification processes, especially at the regional and local scales. 

The spatial, seasonal and inter-annual variability of rainfall follows a complex pattern in 

Mediterranean regions, where the environment is subject not only to droughts, but also to 

flooding and erosion phenomena caused by high intensity rainfalls. Those heavy downpours, 

which often occur after a very dry summer, and the high climatic fluctuations in short- and 

long-term have been pointed out as the main climatic characteristics affecting the 

vulnerability of the Mediterranean basin to erosion (Martínez-Casasnovas et al., 2002). 

In Mediterranean climate regions, prolonged periods of unusually dry conditions reduce the 

availability of water resources and affect vegetation cover; while other areas can be affected 

by an increase in the number of heavy precipitation events, with an increase in the flood risk 

(e.g., Hidalgo et al., 2003a). Extreme precipitation situations such as drought and erosive 

rainfall events have been raising concern about the risks of land degradation and 

desertification in such regions (De Luís et al., 2001; Lázaro et al., 2001; Pereira et al., 2006). 

Drought periods amplify the soil erosion, damage the vegetation cover, reduce the water 

resources, increase the vulnerability to salinization, exhaust and degrade the agricultural 

lands, among other phenomena that cause land degradation (Correia, 2004). During wetter 
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periods, high intensity rainfall is the most important contributor to erosion in drylands 

(WMO, 2005). 

Recent studies, based on climate models and past observed records, predict a drier climate in 

southern Europe as a result of increased evapotranspiration and a relatively slow decrease of 

rainfall amounts and precipitation frequency (Cubasch et al., 1996; Kostopoulou and Jones, 

2005; IPCC, 2007; Vicente-Serrano and Cuadrat-Prats, 2007). The precipitation amounts are 

also projected to decrease in continental Portugal, especially in southern regions (Miranda et 

al., 2006; Sillmann and Roeckner, 2008). These circumstances will potentially amplify the 

vulnerability of several Mediterranean regions to desertification by increasing their 

environmental problems, such as agro-forestry-grazing productivity, soil degradation, aquifers 

recharge, forest fires, biological diversity and composition (De Luís et al., 2001; Ceballos et 

al., 2004). 

Portugal ratified the United Nations Convention to Combat Desertification on April 1, 1996. 

The National Action Programme (NAP) was approved by the Government on June 17, 1999 

(PANCD, 1999). The susceptibility map of desertification of the NAP identifies vulnerable 

areas through an indicator combining four quality indices: climate, soil, vegetation, and 

management/land use (Rosário, 2004b). The susceptibility map of desertification shows that, 

under the mean climatic regime evaluated, the south of the country has extensive areas highly 

vulnerable to desertification. 

The rainfall regime of the south of continental Portugal is Mediterranean with Atlantic 

influence, so it is highly variable in both the spatial and temporal dimensions. Accordingly, 

the climate is characterised by a dry and very hot season, and a very irregular distribution of 

precipitation over the wet season, as well as over the years, with very intense flood peaks and 

with frequent drought periods. 

The climate quality component (aridity index map) of the Portuguese susceptibility map of 

desertification is not fully appropriate to map the areas susceptible to desertification because it 

is based on average computations (Pereira et al., 2006). Consequently, the development of 

indicators accounting for the dynamics of desertification processes and drought, particularly 

the trends and variability hidden behind "the means", should be further addressed (Rosário, 

2004b; Pereira et al., 2006). Moreover, indicators of the uncertainty of the produced maps 

should also be developed (Rosário, 2004b). 
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In semi-arid and dry subhumid regions, such as the south of Portugal, research on the extent 

of dryness and space-time patterns of heavy rainfall events is an important contribution to 

evaluate desertification dynamics and to identify areas potentially at risk from land 

degradation. The impacts of climate change and variability on natural systems and human 

activities are usually experienced at the regional or local scale. However, studies focusing on 

the role of regional climate changing on erosive and aridity factors are lacking for this region, 

especially at the local scale (Rosário, 2004b; Pereira et al., 2006). Moreover, further work is 

necessary to obtain a complete view of the spatiotemporal variability of daily rainfall 

(Rodrigo and Trigo, 2007). 

According to the previous discussion, the characterization of temporal trends and space-time 

patterns in extreme precipitation is expected to be a relevant contribution, not only for the 

assessment of local climate dynamics, but also to the study of the desertification phenomenon. 

This thesis aims at increasing the knowledge on the time and space-time dynamics of extreme 

precipitation, in the south of Portugal, through the analysis of historical records of 

observations at meteorological stations. 

1.2 Scientific background 

Precipitation is one of the most important climate variables. Accurate quantification of its 

observed variability is required for a number of purposes. Information on the spatial 

variability of extreme precipitation is important for river basins management, flood hazards 

protection, studies related to climate change, erosion modelling and other applications for 

ecosystem and hydrological impact modelling. 

Long-term series of reliable precipitation records are essential to develop these studies. The 

detection of temporal discontinuities in climate data is of major importance, because non-

climatic factors may hide the true climatic signal and patterns, and thus potentially bias the 

conclusions of climate and hydrological studies. Therefore, the World Meteorological 

Organization (WMO) recommends that, besides routine quality control, the homogeneity 

testing of climate data should be evaluated before performing those studies (Aguilar et al., 

2003). 



IN T R O D UC T IO N 

 28

Identification of changes in the occurrence of extreme weather events requires accurate and 

spatially consistent climatic time series with at least daily resolution (Easterling et al., 1999; 

Peterson, 2005), since only daily and higher-resolution series account for the submonthly time 

scale nature of extreme weather events (Klein Tank et al., 2002). Precipitation measurements 

are particularly susceptible to irregularities that may affect the analysis of extreme 

precipitation events (Easterling et al., 1999). For instance, station relocations may cause an 

artificial change in observed extremes, particularly in areas of heavy rain. 

Climate extremes are events rarely observed and statistically correspond to the tails of the 

distribution of the climate variable. Changes in extremes correspond to changes in the 

distribution (location, scale and/or shape) of the variable. The analysis of changes in extremes 

can be performed by fitting appropriate theoretical distribution functions, named GEV 

(Generalized Extreme Values) distributions, to the observed daily climate data and then 

investigate the changes in the parameters of the distribution functions over time or space (e.g. 

Weisse and Bois, 2001; Beguería and Vicente-Serrano, 2006). 

Another approach is based on the analysis of changes in climate indices, which are estimated 

from the empirical distribution of the daily observations. To gain a uniform perspective on 

observed changes in climate extremes, a core set of standardized indices was defined by the 

joint working group on climate change detection of the World Meteorological Organization – 

Commission for Climatology (WMO–CCL) and the Research Programme on Climate 

Variability and Predictability (CLIVAR, Peterson et al., 2001; Frich et al., 2002; Peterson, 

2005). In general, these indicators represent events that occur several times per season or year 

giving them more robust statistical properties than measures of extremes that are far enough 

into the tails of the distribution so as not to be observed during some years (Frich et al., 2002; 

Alexander et al., 2006). 

Each index describes particular aspects of climate extremes. Some indices are based on 

statistical quantities such as percentiles, which are more appropriate for regions that contain a 

broad range of climates (Haylock and Nicholls, 2000; Klein Tank and Können, 2003). Other 

indices involve fixed thresholds, such as the number of days per year with daily precipitation 

exceeding 10 mm or 20 mm (e.g. Klein Tank and Können, 2003; Kostopoulou and Jones, 

2005). Indices based on fixed thresholds are beneficial for impact studies as they can be 

related with extreme events that affect human society or result in strong adverse effects on the 
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natural environment (Klein Tank and Können, 2003). Extreme impact events may be of short 

duration, but could also extend over several days, several months or perhaps even years (e.g. 

droughts). 

An approach based on the later set of indices, and indices describing events with short return 

periods (moderate climate extremes), is suitable for the purposes of this research, because it 

allows assessing climate dynamics related to impact studies such as those concerning the 

desertification phenomenon, among other applications for ecosystem and hydrological impact 

modelling. 

1.3 Objectives 

The main objective of this research work is to characterize the time and space-time dynamics 

of precipitation indices, describing both wet and dry extreme values, at local scales in the 

south of Portugal. 

A number of detailed objectives emerge from this general objective: 

 To compile a daily rainfall database for the south of Portugal. 

 To assess the homogeneity of the precipitation time series of the compiled dataset. 

 To use the results of the homogenization analysis to provide a qualitative classification 

of the reliability of the daily rainfall series for studies on climatic variations and change 

as well as impact studies. 

 To compute annually defined indices of precipitation extremes, able to provide 

information on the climatic 'wetness' and 'dryness', using the daily rainfall database for 

the south of Portugal. 

 To investigate the trends and temporal dynamics of those indices of precipitation 

extremes. 

 To produce space-time scenarios for the characterization of the frequency and 

magnitude of extreme precipitation in the last decades of the 20th century, aiming to 

- determine whether extreme precipitation events have distinct spatial patterns 

regarding the annual temporal evolution and variability in the southern region of 
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Portugal where the geographic and climate characteristics have a reasonable degree 

of diversity. 

 To produce space-time scenarios for the characterization of dryness in the last decades 

of the 20th century, aiming to 

- determine whether dry conditions have distinct spatial patterns regarding the annual 

temporal evolution and variability in the southern region of Portugal where 

extensive areas are characterized by scarce precipitation and frequent drought 

periods. 

 To provide an uncertainty evaluation of the produced space-time scenarios. 

 To use those scenarios to produce an additional set of maps of indicators summarizing 

their underlying space-time dynamics. 

1.4 Research questions 

This thesis adds to our knowledge on the time and space-time dynamics of extreme 

precipitation by addressing the key question: 

 How did the extremes of daily precipitation change, locally, in the south of Portugal 

through the last decades 20th century, and what can we learn from this? 

A number of research questions emerge from this general question: 

 Are the available observational datasets adequate to analyse precipitation extremes? 

 Which annual trends are observed for the daily extremes of precipitation? 

 How did the annual spatial patterns of extreme precipitation change through the last 

decades of the 20th century? 

 Which are the patterns of spatial uncertainty associated with those space-time patterns? 

 Do the produced space-time scenarios allow determining spatial patterns of annual 

trends in extreme precipitation? 

 Do the produced space-time scenarios allow determining areas highly prone to frequent 

extreme precipitation events? 
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 Do the produced space-time scenarios allow determining areas highly prone to heavy 

precipitation events? 

 Do the produced space-time scenarios allow determining which areas are more prone to 

extreme dryness? 

1.5 Methodology and research outline 

The research work was organized in three major stages. The first one comprised the 

homogenization analysis of the daily rainfall series. The second stage was dedicated to the 

analysis of the time component of extreme precipitation indices. Finally, the third stage 

corresponded to the development of stochastic space-time models for the characterization of 

indices of precipitation extremes. The following sections summarize the methodological 

framework of each research stage. 

1.5.1 Homogenization of precipitation series 

One of the hypotheses of this research was that the daily rainfall series, which were collected 

for the characterization of extreme precipitation values in the south of continental Portugal, 

could contain potential inhomogeneities. This assumption is recommended by Auer et al. 

(2005) even for studies that use previously quality controlled data. 

Several techniques have been developed for non-climatic inhomogeneities detection and 

adjustment, i.e. homogenization. A review of different methods is presented by Peterson et al. 

(1998), and comparisons between procedures are provided by Ducré-Robitaille et al. (2003) 

and Reeves et al. (2007). 

The homogeneity assessment of 107 daily precipitation series was developed through four 

major stages. The first one aimed at the identification of errors and suspicious daily 

precipitation records, which were flagged using several criteria. The emphasis of this stage 

was on the quality control of precipitation extremes. The following stages were dedicated to 

homogeneity testing and used as the testing variable the annual wet day count with 1 mm as 

threshold, which is expected to be representative of important characteristics of variation at 

the daily scale (Wijngaard et al., 2003). The second stage was an absolute approach 
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comprising the application of six statistical tests to the testing variable, at all locations. In the 

following stages, 62% of the long-term series were also checked through relative approaches 

(testing procedures that use records from neighbouring reference stations), which included the 

application of five homogeneity techniques that are capable of locating the year where a break 

is likely. 

In the third stage, besides the application of three well-established statistical methods, a new 

procedure was proposed for the detection of non-climatic irregularities. The proposed 

technique is an extension of the Ellipse test (described by Allen et al., 1998) that takes into 

account the contemporaneous relationship between several candidate series from the same 

climatic area (Costa and Soares, 2006). This procedure uses the residuals from a seemingly 

unrelated regression equations (SUR) model, thus it was named SUR+Ellipse test. 

Finally, in the fourth stage, a geostatistical simulation approach based on the direct sequential 

simulation (DSS) algorithm (Soares, 2001) was proposed for the homogenization of climate 

time series. The proposed technique accounts for the joint spatial and temporal dependence 

between observations, and enhances the pre-eminence of the closer stations, in both spatial 

and correlation terms (Costa et al., 2008a). 

Following the hybrid approach proposed by Wijngaard et al. (2003), we did not attempt to 

remove non-climatic inhomogeneities from the daily precipitation series, but rather provide a 

qualitative classification of each station's records. Therefore, the results of the 

homogenization analysis were used to develop an overall classification of the daily series. 

1.5.2 Trends in indices of precipitation extremes 

The second research stage aimed at investigating the existence of trends and other temporal 

patterns in extreme precipitation indices, within the period 1955–1999, at 15 monitoring 

stations located in southern Portugal. This 45-year period was chosen to optimize data 

availability across the region, taking into consideration the homogenization analysis 

performed. Among the numerous indices of extreme precipitation described in recent 

literature (e.g., Frich et al., 2002; Kiktev et al., 2003; Klein Tank and Können, 2003; 

Kostopoulou and Jones, 2005; Moberg and Jones, 2005), we selected four of them (SDII, 

R5D, R30 and CDD) and developed two other indices (AII and FDD). Three of the indices 

(SDII, R5D and R30) provide information on the ‘wetness’, whereas the other three (CDD, 
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AII and FDD) characterize the ‘dryness’. All indicators are based on fixed thresholds and 

most of them describe moderate climate extremes. 

The SDII monitors precipitation intensity on wet days, the R5D index is a measure of short-

term precipitation intensity, and the R30 index characterizes the frequency of extremely heavy 

precipitation days. The CDD index characterizes the maximum length of a dry spell, the FDD 

index measures the frequency of dry spells, and the AII can be interpreted as a simple aridity 

index because it is a numerical indicator of the degree of dryness of the climate at a given 

location. 

The six daily precipitation indices were subject to a number of diagnosis tests in order to 

verify the existence of autocorrelation and heteroscedasticity of the regression errors. 

Depending on the tests' results, trend estimation was performed using three different 

regression models, namely the simple linear regression model, the autoregressive error model 

and a heteroscedastic linear model. Moving window statistics (mean and standard deviation) 

of the precipitation indices were also computed to reduce random fluctuations and provide a 

clearer view of their underlying behaviour, such as non-linear trends or periods with distinct 

climatic variability. 

1.5.3 Space-time dynamics of precipitation extremes 

It is long recognized that topography and other geographical factors are responsible for 

considerable spatial heterogeneity of the precipitation distribution at the sub-regional scale 

(e.g., Martínez-Cob, 1996). Therefore, many authors attempted to incorporate elevation and 

other physiographic features into the spatial interpolation of rainfall fields. Some examples 

are multivariate geostatistics such as kriging with external drift or cokriging (Goovaerts, 

2000; Nicolau, 2002; Lloyd, 2005), techniques combining distance weighting methods and 

regression (Faulkner and Prudhomme, 1998), splines (Hutchinson, 1995), and local 

regressions (Daly et al., 1994). 

However, interpolation usually leads to a smoothing of the distribution inferred by the 

observations and thus to a loss of variance. To overcome this limitation, geostatistical 

stochastic simulation has become a widely accepted procedure to reproduce the spatial 

variability and uncertainty of highly variable phenomena (e.g., Bourennane et al., 2007). 

Among the sequential algorithms of geostatistical stochastic simulation, one advantage of 
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direct sequential simulation and cosimulation (Soares, 2001) is precisely the use of original 

variables instead of transformed ones: Gaussian (sequential Gaussian simulation) or indicator 

(sequential indicator simulation). Direct sequential simulation and cosimulation have been 

applied in several soil and air quality characterization studies (e.g., Franco et al., 2006; Russo 

et al., 2008). 

For the last research stage, a subset of three indicators was selected for the characterization of 

the space-time dynamics of extreme precipitation in southern Portugal in the 1940–1999 

period: two indices describing wet conditions (R5D and R30) and the proposed AII index, 

which characterizes dry conditions. For exploratory purposes, the space-time patterns of the 

R20 index were also analyzed for the 1970–1999 period, and uncertainty was assessed (Costa 

and Soares, 2007). This indicator characterizes the frequency of heavy precipitation days. 

Additionally, the spatial patterns of the CDD index were also investigated, but this index was 

discarded due to the spatial inconsistencies found. 

For the spatial interpolation and uncertainty assessment of extreme precipitation, we explore 

the application of direct sequential cosimulation, which allows incorporating covariates such 

as elevation. The choice of cosimulation follows the premises that elevation and precipitation 

may interact differently not only in space, but also during drier and wetter periods (Goovaerts, 

2000; Costa and Soares, 2007). Accordingly, the methodology not only accounts for local 

data variability by using stochastic simulation procedures, but also incorporates space-time 

models that allow capturing long-term trends of extreme precipitation, and local correlations 

between elevation and precipitation through time. Elevation was used as secondary 

information, but other physiographic features were also investigated. 

The direct sequential cosimulation was performed for generating one map per year for the two 

wetness indices (R5D and R30), using 800 m × 800 m grid cells and elevation as exhaustive 

secondary information. For the dryness index (AII), direct sequential simulation was used 

instead, because no relevant correlations were found with physiographic features. 

1.6 Thesis organization 

The thesis manuscript is organized in six chapters and appendixes. The first chapter, which 

ends with a brief overview of each of the main chapters, discusses the motivation and 
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relevance of the research work, states the objectives and the research questions that the thesis 

attempts to address, and provides an indication of how the work progressed and which 

methods were used. 

Chapter 2 is dedicated to the literature review. Taking into consideration the main motivation 

of the work, this chapter starts with an overview of a number of issues related to the 

desertification phenomenon (Section 2.1), including a discussion on the interactions of 

desertification and climate and the assessment of desertification in Portugal. Section 2.2 

reviews the characteristics of the procedures that are most commonly used for the 

homogenization of climate time series, and discusses the problems that arise when the 

homogenization has to be performed for daily precipitation time series and precipitation 

extremes. Section 2.3 discusses a number of issues concerning the characterization of 

precipitation extremes, including an overview of the techniques commonly used in the spatial 

interpolation of rainfall fields, and a literature review on the analysis of extreme precipitation 

indices. 

Chapter 3 describes the work developed during the first research stage, namely the 

homogenization analysis of the daily rainfall series. The study region and data are described 

in Section 3.1. The methodology is detailed in Section 3.2, which includes a brief overview of 

the basic quality control procedures applied to the daily data, and a thorough description of 

the statistical tests and techniques used to detect temporal discontinuities in the precipitation 

time series. Section 3.3 describes and discusses the results of this research stage. 

Chapter 4 corresponds to the second research stage, which was dedicated to the evaluation of 

temporal trends in extreme precipitation by analysing a number of climate indices that are 

described in Section 4.1. The methodology is detailed in Section 4.2. Section 4.3 describes 

and discusses the results of this research stage, including the dynamic temporal evolution of 

precipitation extremes. 

The work developed in the last research stage is described in Chapter 5 and corresponds to the 

characterization of the space-time dynamics of precipitation extremes. The study region and 

precipitation data are described in Section 5.1, which includes a discussion on the spatial 

inconsistencies found in the CDD index. The methodology is detailed in Section 5.2, which 

includes a description of the stochastic space-time models used to produce the scenarios for 

the indices of precipitation extremes, and the procedures used to produce maps of indicators 
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summarizing the space-time dynamics of precipitation extremes. Section 5.3 describes and 

discusses the results, including the space-time relationships between elevation and the indices, 

and the uncertainty assessment of the space-time scenarios produced. 

Chapter 6 states the conclusions of this study by summarizing the main findings and 

contributions of the thesis, and by pointing out a number of suggestions for further research. 
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2. Literature review 

Desertification is one of the most complex environmental and socio-economical threatening 

events. Desertification is caused by multiple interacting factors of climatic, ecological, and 

socio-economic origin. This multilevel dynamic process can only be monitored, assessed and 

mapped by studying the dynamics of its individual components and their complex effects 

(Gringof and Mersha, 2006). Section 2.1 presents an overview of the desertification 

phenomenon. Despite human factors (e.g., demographics, poverty, market and trade systems, 

political stability) play a role on desertification processes, the review will be more centred on 

the physical processes and on the interactions of climate with desertification (Section 2.1.1). 

The assessment of desertification in Portugal is reviewed in Section 2.1.3. 

The aim of climate data homogenization is to adjust observations, if necessary, so that the 

temporal variations in the adjusted data are caused only by climate processes. A great deal of 

effort has been made on the last two decades to develop procedures to identify and remove 

non-climatic inhomogeneities. Section 2.2 reviews the most commonly used homogenization 

procedures, and discusses the problems that arise when the homogenization has to be 

performed for daily precipitation time series and precipitation extremes. 

The literature review on the characterization of extreme precipitation events is presented in 

Section 2.3, and mainly focuses works analysing the time and space-time patterns of 

indicators of extreme precipitation. The relationship between precipitation and physiographic 

features is discussed in Section 2.3.1, and an overview of the interpolation techniques used to 

map climate data is presented and discussed in Section 2.3.2. Finally, a review on extreme 

precipitation indices is presented in Section 2.3.3. 

2.1 The desertification phenomenon 

The concept of desertification dates to colonial western Africa in the 1920s and 1930s, and 

has been given more attention in the early 1970s in an attempt to understand a long series of 

drought years that brought a major economic, social and environmental problem to the 

African Sahel (Lonergan, 2005). In 1974, the United Nations General Assembly decided to 
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initiate concerted international action to combat desertification and assist the economic 

development of affected countries. For the international community, concerns about 

desertification reached an important threshold at the United Nations Conference on 

Environment and Development in Rio de Janeiro in 1992, when the Convention to Combat 

Desertification (CCD) was formulated and more than 60 countries have ratified the 

convention. On 17 March 2008, Serbia became the 193rd Party to the United Nations CCD 

(http://www.unccd.int, retrieved 27 March 2008). 

The most common definition of desertification is the adopted by the United Nations 

Convention to Combat Desertification (UNCCD 1994, p. 4) and it is defined as “land 

degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, 

including climatic variations and human activities”. Arid, semi-arid and dry sub-humid areas 

"means areas, other than polar and sub-polar regions, in which the ratio of annual 

precipitation to potential evapotranspiration falls within the range from 0.05 to 0.65”. This 

means that desertification is not the natural expansion of existing deserts, but rather the 

degradation of land in arid, semi-arid, and dry sub-humid areas. Today, the terms 

desertification and land degradation are used almost interchangeably. 

Enne and Zucca (2000) review the fundamental institutional stages and actions undertaken by 

the international community to understand and combat desertification. Although the issue of 

desertification has created a number of global environmental institutions and despite the 

efforts to collect more and better data and information, there are still divergent views 

regarding the causes and physical extent of desertification (Enne and Zucca, 2000; Lonergan, 

2005; Gathara, 2006; Schreiber et al., 2008). The combination and interaction of many factors 

determine the status of desertification, but a number of driving forces are common to all 

definitions: desertification is a gradual process of soil productivity loss and degradation of the 

vegetation cover caused by human activities and climatic variations such as prolonged 

droughts and erosive rainfall. 

According to Geist and Lambin (2004), a detailed understanding of the complex set of 

proximate causes and underlying driving forces affecting dryland-cover change in a given 

location is required before any assessment and policy intervention. Benson et al. (1997), 

Gathara (2006), Schreiber et al. (2008) analyse the causes and impacts of desertification and 

give a number of suggestions and recommendations to mitigate its effects. Boardman (2006) 
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reviews the current approaches for the assessment of soil erosion and discusses their 

limitations. 

Pereira et al. (2006) have a holistic approach to the desertification phenomenon, based on the 

Portuguese environmental and socio-economic context: desertification is "considered as a 

man-induced long-term imbalance in the use of the land, the availability of water, and the 

opportunities for development, which affects the territory and the populations in arid, semi-

arid and sub-humid climates, and combines damaged soil and degraded vegetation, 

inappropriate land use, mining and degradation of groundwater, increased flash flooding, and 

a deterioration of the carrying capacity of the ecosystems". 

Even though the desertification phenomenon has numerous and complex causes, Schreiber et 

al. (2008) concluded that desertification is driven by a limited group of core variables, most 

prominently climatic, technological, political (both policy and institutional) and economic 

factors. However, according to Schreiber et al. (2008), the relative importance of physical 

processes and anthropogenic factors in affecting the global distribution of desertification are 

numerous and particular to pressures faced by people and agricultural systems in a specific 

location. 

Desertification processes include accelerated soil erosion by wind and water, increasing 

salinization of soils and near-surface groundwater supplies, a reduction in soil moisture 

retention, an increase in surface runoff and stream flow variability, the reduction of organic 

elements in the soil, the plant cover degradation, and a reduction in the overall productivity in 

dryland ecosystems (Benson et al., 1997; Gringof and Mersha, 2006; Schreiber et al., 2008). 

Gathara (2006) defines desertification as natural and anthropogenic processes involving all 

forms of degradation of land vulnerable to severe edaphic or climate aridity, thereby leading 

to the reduction or destruction of biological potential of the land, deterioration of the living 

standard and intensification of desert like conditions. Gathara (2006) discusses the four main 

human factors that may be directly involved on desertification processes: overgrazing, loss of 

vegetation cover, over-cultivation and poor irrigation practices. Regarding the natural causes 

of desertification, those authors point out the following factors: prolonged droughts (leading 

to vegetation destruction and loss in biological and economic productivity of the dryland); 

wind erosion; water erosion (extreme drought periods in many drylands are often followed by 
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extremely heavy rainfall occurrences that cause extension soil erosion); and climate change 

(permanent shift in the traditional patterns of climatic parameters). 

Geist and Lambin (2004) analysed 132 case studies on the causes of desertification and 

concluded that it is driven by a limited suite of recurrent core variables, of which the most 

important at the underlying level are climatic factors, economic factors, institutions, national 

policies, population growth, and remote influences. These factors drive cropland expansion, 

overgrazing and infrastructure extension. For each location, a combination of causal factors, 

in combination with feedback mechanisms and regional land use, make up specific pathways 

of land change that could trigger desertification. 

Gathara (2006) defines twelve key scientific issues in the mitigation of the desertification 

phenomenon: 

- Assessment and mapping; regular assessment and mapping 

- Monitoring: current status 

- Prediction; future expectation projections 

- Database: crucial to any mitigation plan [Web site addresses from a number of 

databases are provided by Schreiber et al. (2008)] 

- Research: understanding of the processes 

- Information exchange: learning from successes and failures of others 

- Training and education 

- Transfer of technology 

- Funding for desertification and climate research seems to be decreasing. The 

associated problems are increasing e.g. sound environmental management and 

sustainable development 

- Disaster preparedness: direct/indirect triggers of many desertification drivers 

- Planning and management 

- Regional and international co-operation Agenda 21 and the three conventions 

2.1.1 Interactions of desertification and climate 

Climate has an important role on desertification processes through its impacts on dryland soils 

and vegetation, on dryland hydrology and, ultimately, on human land use (e.g., Geist and 

Lambin, 2004; Gringof and Mersha, 2006; Schreiber et al., 2008). Desertification versus 
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climate processes are complex and highly interactive, involving various space-time 

dimensions (Gathara 2006). The analysis of climatic variability and trends is of major 

importance to understand the desertification processes, especially at the regional and local 

scales, because the consequences of climate change, either caused by physical or 

anthropogenic factors, can be more significant at these scales and have consequences that are 

more serious (Correia, 2004). 

Gringof and Mersha (2006) discuss the impacts of drought and other extreme weather events 

(e.g., torrential rain, wind and water erosion, strong winds and dust storms) on desertification 

processes. When looking at the climatic factors that cause desertification, Gringof and Mersha 

(2006) make a distinction between arid climates and drought. In their understanding, "drought 

is a natural event of nature, caused by atmospheric circulation processes, entailing a 

prolonged absence of precipitation (or its significant reduction relative to the average norms 

over several years) in combination with increased air, soil and wind temperatures, leading to a 

sudden reduction in the corresponding humidity, the exhaustion of soil moisture reserves and 

disruption of the water balances of plants and animals". Gringof and Mersha (2006) argue that 

"an arid climate is the climate of an arid area in which, for climatic reasons, the probability of 

drought is more than 50%, as opposed to the situation in dry areas, where the humidity of 

atmospheric precipitation is never sufficient for dry-land farming". 

Disregarding the possibility of climate change, aridity is a permanent climatic feature of 

regions of low precipitation, and usually of high temperature, while drought is a temporary 

feature affecting almost any precipitation or temperature regime around the world. Aridity is 

usually defined in terms of low-average precipitation, available water, or humidity. Drought, 

considered in the context of variability, is experienced only when precipitation falls 

appreciably below normal (Heim, 2002). A review on drought and aridity indicators is 

presented in the following section. 

Figure 2.1 shows a schematic representation of how drought and aridity can favour the 

desertification susceptibility. Arid regions are particularly vulnerable to the natural 

phenomenon of drought. However, drought situations may cause the overexploitation of 

natural resources, through the incorrect use of land and water, resulting in desertification. On 

the other hand, desertification may in turn amplify the aridity situation, which initiates a cycle 

where the interaction of natural and human factors increases the land degradation and may 
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result in a permanent degradation situation (Correia, 2004). These interactions between 

aridity, drought and desertification are also shown in Figure 2.2, which points out the 

dynamic features of these desertification processes. 
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Figure 2.1 – Dynamic cycle showing drought and aridity as factors that favour the 
desertification susceptibility (adapted from Correia (2004) and Pereira et al. (2006)) 
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Figure 2.2 – Interactions between aridity, drought and desertification (adapted from Correia, 
2004) 

According to Geist and Lambin (2004), increased aridity is a robust proximate cause of 

desertification, both indirectly through greater rainfall variability and directly through 

prolonged droughts. The effects of increased aridity on land cover include increased fire 

frequencies and greater soil erosion triggered by more frequent oscillations between warmer, 

drier conditions and cooler, more humid conditions. However, Geist and Lambin (2004) 

verified that these effects are reported as causes of desertification only one-third as often as 
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prolonged drought periods. Climatic factors, mainly associated with a decrease in rainfall are 

prominent underlying driving forces of desertification. They operate both indirectly, through 

changes in land use resulting from variation in rainfall, and directly, affecting land cover in 

the form of prolonged droughts. Drought periods amplify the soil erosion, damage the 

vegetation cover, reduce the water resources, increase the vulnerability to salinization, 

exhaust and degrade the agricultural lands, among other phenomena that cause land 

degradation (Correia, 2004). 

Dryland ecosystems are highly responsive to climatic variability. Surface evaporation from 

dryland soils may result in soil salinization. Removal or loss of vegetation cover results in an 

increased risk of soil erosion and land degradation, especially during drought periods, because 

the topsoil becomes more vulnerable to raindrop impact, surface runoff and wind. High rates 

of erosion reduce the soil profile depth, in turn reducing the total amount of soil moisture that 

can be stored. This means that the land becomes more prone to drought and floods (Schreiber 

et al., 2008). 

During wetter periods, high intensity rainfall is the most important contributor to erosion in 

drylands (WMO, 2005). According to Kosmas et al. (1999), water erosion is controlled by a 

number of factors interacting with one another (Figure 2.3): climate, vegetation, soil 

properties and topography. Heavy rainfall events have a greater impact on the start of the 

growing season, when less protective vegetation exists (Schreiber et al., 2008). The rivers 

from dryland regions have extremely variable flow regimes, and both river discharge and 

sediment yield are highly sensitive to fluctuations in precipitation (Benson et al., 1997). 
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Figure 2.3 – Flow diagram showing the direct and indirect controls on water erosion rates 
(Kosmas et al., 1999) 

Climate change resulting from global warming may exacerbate the problem of desertification 

since a decrease in the total amount of rainfall in arid and semi-arid areas could increase the 

total area of dry lands worldwide, and thus the total amount of land potentially at risk from 

desertification. Drought and climate change strongly aggravate the process of desertification 

by increasing the pressure on limited natural resources and on vulnerable ecosystems (Pereira 

et al., 2006). The potential broad impacts of climate change in soil and water degradation are 

generally summarized in Figure 2.4. 

Even if the concentrations of all greenhouse gases and aerosols had been kept constant at year 

2000 levels, a further warming of about 0.1°C per decade would be expected (IPCC, 2007). 

An increase in temperature will most probably have the effect of increasing potential 

evapotranspiration rates in drylands, and in the absence of any large increases in precipitation, 

many drylands are accordingly predicted to become more arid (Benson et al., 1997). 
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Figure 2.4 – Potential broad impacts of climate change in soil and water that may intensify the 
desertification susceptibility 

Increased drying linked with higher temperatures and decreased precipitation has contributed 

to changes in drought (IPCC, 2007). Accordingly, drying has been observed in the Sahel, the 

Mediterranean, southern Africa and parts of southern Asia, which will most likely expand the 

desertification problem in these regions. 

On the other hand, desertification processes (e.g., land use or vegetation losses) may in turn 

have an influence on climate (Benson et al., 1997; Millán et al., 2005). Sivakumar (2007) 

makes a thorough review on the interactions between climate and desertification, and 

discusses how human activities modify the surface characteristics and atmospheric 

composition of drylands and how these may influence local and regional dryland climates. 
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However, the role of land use and land cover changes on climatic variability and change is 

poorly understood, and will require more research (Herrmann and Hutchinson, 2005; 

Schreiber et al., 2008). Linkages to rainfall changes are even more complex, and the impact of 

human activities on rainfall remains a topic of considerable debate. 

2.1.1.1 Drought and aridity characterization 

Rainfall availability is fundamental in drylands. Recurrent low and scarce rainfall lead to 

drought, which is one of the main climatic driving factors of desertification. Droughts involve 

significant multiple impacts in terms of crop losses, urban water supply shortages, 

degradation and desertification, and forest fires. The literature on drought and aridity 

phenomena is extensive. Reviewing studies on drought classifications and indicators of 

drought and aridity are provided by Benson et al. (1997), Hisdal and Tallaksen (2000), Heim 

(2002), Gathara (2006). According to Heim (2002), no single index has been able to 

adequately capture the intensity and severity of drought because of its complexity. 

Drought definitions are usually classified into four categories: meteorological, hydrological, 

agricultural and socio-economic. Drought indicators are variables describing the magnitude, 

duration, severity, and spatial extent of drought (Steinemann et al., 2005). Depending on the 

classification, drought indicators involve several variables, used either alone or in 

combination, such as precipitation, temperature, humidity, evaporation from free water, 

transpiration from plants, potential evapotranspiration, soil moisture, wind, river and stream 

flow, and plant condition. 

There are numerous definitions of meteorological drought and, in general, depend on the 

climatic features of each region. Some definitions compare the degree of drought with an 

average amount evaluated over a long period (e.g. climate normal), while others are evaluated 

in relation to a relevant statistical parameter (e.g. percentiles). Meteorological drought is often 

expressed based on the degree of dryness and the duration of the dry period. Meteorological 

indices for drought analysis include elements based on meteorological and hydrological 

variables, such as precipitation intensity, potential evapotranspiration, potential water balance 

(rain-potential evapotranspiration) and combinations of the previous elements, among others. 

Hydrological drought is defined in terms of the effects of dry spells on surface or ground 

water hydrology. Definitions of the frequency and severity of hydrological drought are often 
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based on its effect on catchments. Complex indices include elements based on meteorological 

and hydrological variables, such as precipitation, river and stream flow, reservoir storage, and 

combinations of the previous elements, among others. Hydrological droughts are more related 

with the effects of periods of precipitation shortfall on surface or subsurface water supply, 

which can be evaluated by a hydrological water balance model. 

Agricultural drought is related to physiological drought, which is determined from conditions 

of natural vegetation, crops, livestock, pastures and other agricultural systems (Gathara, 

2006). It is usually measured by the effects of water deficit in terms of economic losses to 

agriculturists. It is defined by measures of the availability of soil water to plants or animals, 

such as precipitation shortages, differences between actual and potential evapotranspiration, 

soil water deficits, radiation (heat), drying wind, etc.  A soil-water balance model is often 

used to assess the agricultural drought because, in addition to meteorological conditions, it 

takes into account pedological and crop factors (Benson et al., 1997). 

The definition of socio-economic drought associates the supply and demand of some 

economic good or service with elements of meteorological, hydrological, and agricultural 

drought (Hisdal and Tallaksen, 2000; Gathara, 2006). 

Smakhtin and Hughes (2004) review a number of drought definitions and indicators, and 

analyse their applicability for drought prediction and management in the context of south 

Asia. A quite comprehensive list of complex and simple aridity and drought indices as well as 

statistical measures applied as drought indices can be found in Hounam et al. (1975), Benson 

et al. (1997), Heim (2000; 2002), Gringof and Mersha (2006). 

Gringof and Mersha (2006) organize the various empirical expressions of drying coefficients 

into the following groups: 

- Formulas that reflect the relationship between total atmospheric precipitation and total 

temperature for the year, or for various periods of the warm season; 

- Formulas that reflect the relationship between total atmospheric precipitation and 

evaporation for a predetermined period of time; 

- The relationships between total precipitation, temperature and relative humidity for a 

predetermined period of time; 

- Formulas using the water deficit and evaporation deficit values; 



LI T E R A T U R E R E V I E W 

 50

- Aridity indices representing the relationship between moisture reserves in the soil 

layer within reach of the roots of plants and sum of air temperatures for a 

predetermined period. 

While drought indicators are variables to detect and characterize drought conditions, drought 

triggers are indicator thresholds to define and activate levels of drought responses 

(Steinemann et al., 2005; Steinemann and Cavalcanti, 2006). Steinemann et al. (2005) review 

common indicators and triggers, their functions, and their strengths and limitations. 

Steinemann and Cavalcanti (2006) describe a process and analytic methods for the 

development, analysis, and evaluation of drought indicators and triggers. 

McKee et al. (1993) developed the Standardized Precipitation Index (SPI) as an alternative to 

the well-known Palmer's indices (Palmer, 1965) for Colorado, although it is now widely used 

in different climate regimes. The SPI is the number of standard deviations that observed 

cumulative precipitation deviates from the climatological average, and can be calculated for 

any time scale (e.g., 3, 6 or 12 months). Soil moisture conditions respond to precipitation 

anomalies on a relatively short time scale, while ground water, stream flow, and reservoir 

storage reflect the longer-term precipitation anomalies. Hence, the different time scales for 

which the index is computed address the various types of drought: the shorter seasons for 

agricultural and meteorological drought, the longer seasons for hydrological drought (Heim, 

2002). While Palmer's indices are water balance indices that consider water supply 

(precipitation), demand (evapotranspiration) and loss (runoff), the SPI is a probability index 

that considers only precipitation. Drought intensity, magnitude, and duration can be 

determined, as well as the historical data-based probability of emerging from a specific 

drought. 

For exemple, Paulo et al. (2003) used the SPI (3 and 12-months time scales) and the theory of 

runs to characterize droughts in the Alentejo region (south of Portugal) for the period 

1931/99, and show that droughts randomly affect the region. Additionally, their results 

suggest that drought occurrence and severity are higher during the second half of the study 

period, especially in spring periods, which highly influence the productivity of rain fed 

agriculture. 
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2.1.2 Desertification indicators 

The Convention to Combat Desertification recommends the development and adoption of 

indicators systems by the National Action Programme (NAP) of each country. At a national 

level, those indicators should incorporate the physical and human factors that interact in 

desertification processes at regional levels. 

The World Atlas of Desertification (UNEP, 1992) determines arid areas using an indicator 

representing the relationship between the annual average precipitation (P mm) and potential 

evapotranspiration (РЕТ mm), which ranges from 0.05 to 0.65. The following criteria were 

used to determine the arid zones: hyper-arid (P/PET<0.05); arid (0.05≤P/PET<0.20); semi-

arid (0.20≤P/PET<0.50); and dry sub-humid (P/PET≥0.50). The second edition of this atlas 

(UNEP, 1997) was improved by shifting the attention from only soil degradation to include 

also vegetation degradation. 

Enne and Zucca (2000) argue that a Desertification Monitoring System should be created on 

the basis of impact indicators having a dual function of (i) providing a diagnosis, integrated in 

space and time, of the state of natural resources and of populations of the affected regions; (ii) 

supporting the decision-making process, providing information on environmental issues, both 

of a bio-physical and socio-economic nature. 

Many indicator systems for desertification assessment were established following the United 

Nations Conference on Desertification, held in Nairobi in 1977. Even within European 

Mediterranean countries, the subject has been investigated in countless research projects 

(Enne and Zucca, 2000). However, a community or patch-based fine-scale indicator system in 

combination with high-resolution data and ecological models has not yet been established 

(Yang et al., 2005). 

The first scientific effort for the identification of sensitive areas in the northern Mediterranean 

region is due to the European Commission MEDALUS (Mediterranean Desertification and 

Land Use) project (Kosmas et al., 1999; http://www.medalus.demon.co.uk, retrieved 26 

March 2008). The methodology uses a multi-factor approach based on both a general and a 

local knowledge of the environmental processes that operate in European Mediterranean 

environments. The proposed indicators are appropriate at the European/National (regional 

desertification indicators) and regional (environmentally sensitive areas) scales. The 
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definition of environmentally sensitive areas to desertification requires the following 

information: soil data, vegetation data, climate data, and land management characteristics 

(Figure 2.5). 
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Figure 2.5 – Parameters used by the MEDALUS project for the definition and mapping of the 
Environmentally Sensitive Areas to desertification (Kosmas et al., 1999) 

For example, the following information is required to assess climate quality: mean monthly 

air temperature (°C), mean monthly precipitation amount (mm), mean monthly number of 

days with minimum temperature (°C), and mean monthly potential evapotranspiration (mm). 

Additionally, Kosmas et al. (1999) suggest the use of the Bagnouls-Gaussen bioclimatic 
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aridity index and the use of the slope aspect considered according to two classes (class one 

with NW and NE aspects, and class two with SE and SW aspects). 

The indices for soil quality (SQI), climate quality (CQI), vegetation quality (VQI), and 

management quality (MQI) are first determined. Afterwards, the Environmentally Sensitive 

Areas Index (ESAI) is obtained as a geometrical average of the four quality indices: 

ESAI=(SQI×CQI×VQI×MQI)1/4. The range of ESAI values determines the types of 

environmentally sensitive areas to desertification (critical, fragile, potential and non-affected). 

Targeted areas in Greece (Lesvos Island), Italy (Agri basin) and Portugal (Alentejo region) 

were used to test and improve the methodology. 

Enne and Zucca (2000) describe the methodology and indicators proposed for the assessment 

of desertification by the Italian Environment Protection Agency (ANPA). The indicators were 

selected from a number of sources: research programmes on the subject of desertification 

indicators in the Mediterranean environment or on a global, regional, or national level (e.g., 

the MEDALUS project, or the Portuguese NAP); interdisciplinary research programmes on 

desertification on a regional scale; and other programmes and research on related topics 

described in the literature. The proposed framework for the classification of the 19 indicators 

is summarized in Table 2.1. 

Table 2.1 – Framework for indicators classification, proposed by Enne and Zucca (2000) 

Criteria Classes 

Operational 
objective Prevention Monitoring Mitigation   

Position in the 
logical 
framework 

Driving force Pressure State Impact Response 

Space-scale Station Local Sub-region Region 
European 
Mediterranean 
region 

Time-scale Daily or more Monthly or 
seasonal Annual Less than 

annual 
Single 
measure 

Component of the 
system under 
consideration 

Soil Water 
resources Vegetation Climate 

Socio-
economic 
aspects 

Nature of data In data banks Direct 
gathering 

Remote 
sensing   
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Other programmes and projects aiming to develop indicators, or related research, for the 

assessment of desertification in European and Mediterranean regions include: 

 ACCELERATES – Assessing Climate Change Effects on Land use and Ecosystems; from 
Regional Analysis to the European Scale (http://www.geo.ucl.ac.be/accelerates, retrieved 
20 March 2008); 

 ATEAM – Advanced Terrestrial Ecosystem Analysis and Modelling (http://www.pik-
potsdam.de/ateam/index.html, retrieved 20 March 2008); 

 BioAridRisk – Space-Time Evaluation of the Risks of Climate Changes Based on an 
Aridity Index1; 

 CIDmeg – Construction of a Desertification Susceptibility Index for the Left Margin of 
Guadiana2; 

 CLEMDES – Clearing House Mechanism on Desertification for the Northern 
Mediterranean Region (http://www.inea.it/clemdes1, retrieved 20 March 2008); 

 DESERTLINKS – Combating Desertification in Mediterranean Europe: Linking Science 
with Stakeholders (http://www.kcl.ac.uk/projects/desertlinks, retrieved 20 March 2008); 

 DesertWatch – European Space Agency Desertification Monitoring Service 
 http://dup.esrin.esa.it/desertwatch, retrieved 20 March 2008); 

 DeSurvey – A Surveillance System for Assessing and Monitoring of Desertification 
(http://www.desurvey.net, retrieved 20 March 2008); 

 DIS/MED – Desertification Information System to support National Action Programmes 
in the Mediterranean (http://dismed.eionet.europa.eu, retrieved 20 March 2008; DISMED 
Central Data Repository, http://cdr.dismed.eionet.europa.eu, retrieved 20 March 2008); 

 GEORANGE – Geomatics in the Assessment and Sustainable Management of 
Mediterranean Rangelands (http://www.georange.org, retrieved 20 March 2008); 

 INDEX – Indicators and Thresholds for Desertification, Soil Quality, and Remediation 
(www.soil-index.com, retrieved 20 March 2008); 

 LADAMER – Land Degradation Assessment in Mediterranean Europe 
(http://www.ladamer.org, retrieved 20 March 2008); 

 MEDACTION – Policies for Land Use to Combat Desertification 
(http://www.icis.unimaas.nl/medaction, retrieved 20 March 2008); 

                                                 

1 Participants: Instituto Superior Técnico (Portugal); Universidade de Évora (Portugal); Universidade 
do Algarve (Portugal). 
2 Participant: Instituto Superior Técnico (Portugal). 
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 MEDRAP – Concerted Action to Support the Northern Mediterranean Regional Action 
Programme to Combat Desertification (http://nrd.uniss.it/medrap/index.htm, retrieved 20 
March 2008); 

 REACTION – Restoration Actions to Combat Desertification in the Northern 
Mediterranean (http://www.ceam.es/reaction/, retrieved 20 March 2008); 

 RECONDES – Conditions for Restoration and Mitigation of Desertified Areas using 
Vegetation (http://www.port.ac.uk/research/recondes, retrieved 20 March 2008); 

 REDMED – Restoration of Degraded Ecosystems in Mediterranean Regions 
(http://www.gva.es/ceam/redmed, retrieved 20 March 2008); 

 SADMO – Système d'Évaluation et Contrôle de la Désertification dans la Méditerranée 
Occidentale3. 

In 2001, the UNEP launched the Land Degradation Assessment in Drylands (LADA) project 

(designed and executed by the FAO) aiming to develop and test an effective assessment 

methodology for land degradation in drylands at local, national, sub-regional and global levels 

(http://lada.virtualcentre.org, retrieved 25 March 2008). Currently, it is developing pilot 

projects in Argentina, China, Cuba, Senegal, South Africa and Tunisia. 

Gringof and Mersha (2006) recommended the adoption of a Total Threat of Desertification 

formula, which sums up five aspects of desertification: present state, rate or speed of 

desertification; internal threat of desertification (including landscape characteristics that 

describe stability during degradation); the effect of livestock on the surrounding environment; 

and the population density. The degree of influence of each aspect, empirically determined 

and expressed in points, allows assessing the category of desertification (slight, average, 

severe and very severe). 

Several processes may act as the contributing factors of desertification depending on the 

spatial scale in which the desertification phenomenon is analysed (Schreiber et al., 2008). The 

                                                 

3 Participants: Instituto de Estudos Superiores de Recursos Naturais (Portugal, Lead partner); Instituto 
Superior Técnico (Portugal); Universidade de Jaén (Spain); Consejo Superior de Investigaciones 
Científicas / Estación Experimental de Zonas Aridas (Spain); Institut National de la Recherche 
Agronomique / Unité de Biométrie d’Avignon (France); Regione Toscana / Dipartimento dello Sviluppo 
Economico - Area delle Politiche Regionali dell’Innovazione e della Ricerca (Italy); Democritus 
University of Thrace / Laboratory I of Hydraulics (Greece); Comissão de Coordenação para o 
Desenvolvimento Regional do Alentejo (Portugal); Observatório do Sahara e do Sabel (Independent 
International Organization, Observer partner); Direction Général des Forest - Ministère de l'Agriculture 
(Algeria, Observer partner). 
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desertification criteria are of a regional character, and can include various characteristics. The 

need to identify indicators that are applicable to different spatial scales and to different 

environmental contexts is one of the fundamental problems of research on indicators (Enne 

and Zucca, 2000). Table 2.2 summarizes major causes and indicators of desertification at 

three different spatial scales. 

Table 2.2 – Desertification causes and indicators at different spatial scale (Schreiber et al., 2008) 

Spatial scale Natural causes Human causes Indicators 

Macro scale 
(2000–10000 km) 

 Global climate change 
 Increasing drought 
 Shift of vegetation 
zones 

 Large-scale migration 
 Population increase 

 Land use changes 
 Reduced vegetation 
cover 

Meso scale 
(2–2000 km) 

 Local climate change 
 Disturbed rainfall 
patterns 

 Increasing 
temperatures 

 Population increase 
 Forced migration 
 Settlement of herders 
 Deforestation 
 Urbanization 

 Reduction in forest 
cover 

 Decrease in grasslands 
 Increase in cropland 
 Declining yield 
statistics 

 Sediment load in rivers 
 Dust storm frequency 

Micro scale 
(<2 km) 

 Erratic rainfall pattern 
 Increased temperatures 
 More extreme events 
 Disturbed water 
balances 

 Increased erosion 

 Poor land management 
 Bad irrigation practices 
 Soil nutrient depletion 
 Tree removal 
 Overgrazing 

 Poor vegetation cover 
 Low crop yields 
 Water erosion features 
 Wind erosion features 
 Crusted soils 
 Bare soils 

Remote sensing methods (e.g. aerial and satellite images) are now used for the assessment and 

mapping of desertification processes (Lantieri, 2003). The signal recorded by the remote 

sensor is influenced by the types of predominant vegetation, the plant cover density and stage 

of development, as well as soil moisture, soil texture and relief, and anthropogenic processes 

(Lantieri, 2003; Schreiber et al., 2008). According to Lantieri (2003), it is possible to map on 

high-resolution imagery several land degradation features such as: 

- wind erosion patterns, especially over large areas; 

- salinization patterns in field crops of large irrigated schemes; 

- overgrazing features; 

- sedimentation of lakes or rivers which are consequent to soil erosion upstream; 
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- soil water erosion pattern only when of great size and over large areas (gullies); 

- burnt areas or areas subject to bush fires. 

The spectral radiance of soil and plant cover recorded by satellite information allows 

characterizing various desertification processes. Lantieri (2003) reviews different types of 

vegetation indices derived from remote sensing data, which have high potential for assessing 

the vegetation activity, because of both rainfall availability and land conditions. Vegetation 

coverage is influenced by climate change including short-term fluctuation (drought) and long-

term variation (aridity). Yang et al. (2005) recommend the use of multi-temporal data to 

determine short-term vegetation fluctuation from long-term permanent change, because it may 

take 30–40 years before a permanent change in vegetation coverage becomes evident. 

Lantieri (2003) reviews a number of research programmes making use of remote sensing 

information, from global environmental institutions, which are of interest to assess the causes 

and effects of the desertification phenomenon. 

The Normalized Difference Vegetation Index (NDVI) is probably the most widely used 

indicator of the vegetation's density and productivity (e.g. Jabbar and Chen, 2006; Gouveia et 

al., 2008). Gringof and Mersha (2006) recommend that a NDVI with various resolutions 

should be used: globally, with a resolution of 8 kilometres; nationally, with a resolution of 1 

kilometre; and regionally with a resolution of 200 meters or less. 

Kogan (2000) describes a new numerical method for the early detection and monitoring of 

droughts and of their impact assessment from NOAA (National Oceanic and Atmospheric 

Administration, U.S.A.) operational environmental satellites. Unlike conventional methods 

that use the NDVI for vegetation monitoring, the new method is based on estimation of 

vegetation stress from indices derived from satellite images designed to monitor vegetation 

health, moisture, and thermal conditions. According to Kogan (2000), "this is the first 

globally universal technique to deal with such a complex phenomenon as drought". 

A geographical information system (GIS) enables analysis of combinations of different 

indicators (data layers), which may result in a better understanding of land degradation 

problems, causes and consequences (Diodato and Ceccarelli, 2004; Schreiber et al., 2008). 

Therefore, many studies of land degradation combine satellite remote sensing information 

with other spatial data, such as climate characteristics, soils and land use, into a GIS (e.g., 
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Kosmas et al., 1999; Rosário, 2004b; Mendicino and Versace, 2007). For example, Lantieri 

(2003) suggests that, in addition to comparing the present NDVI with the one of a reference 

year and/or with rainfall data, NDVI images could be superimposed with land cover maps 

and/or biomass maps to assess and monitor land degradation. These combinations of spatial 

information are enabled by GIS. 

2.1.3 Assessment of desertification in Portugal and European Mediterranean regions 

As an outcome of the combination and interaction of climatic and social driving forces, 

desertification is not new in the Mediterranean. Puigdefábregas and Mendizabal (1998) 

reviewed the major climatic and land use fluctuations during the past 500 years in the Iberian 

Peninsula, and identified three critical stages. The first stage, in the 16th–17th centuries, was 

associated with the joint effects of the Little Ice Age, political changes and requirements of 

American colonization. The second phase, at the beginning of the 20th century, was mainly 

associated with the demographic saturation of rural areas. The third stage started in the 1960s 

and it was driven by social and technological changes in rural life. 

Enne and Zucca (2000) review a number of initiatives and indicators that aimed to assess 

desertification in European Mediterranean countries. According to those authors, 

desertification in the European Mediterranean regions is linked to the following general 

characteristics of the region: 

- Particular climatic and geomorphologic characteristics, which combined with often 

poorly adapted use of land, have resulted in a highly vulnerable environment. 

- The strong human pressure was aggravated after the 1950s, because of the 

intensification and mechanisation of agro-pastoral practices, the strong increase in 

water demand also linked to urban and tourist development, and the appearance of soil 

and water pollution. 

The spatial, seasonal and inter-annual variability of rainfall follows a complex pattern in 

Mediterranean regions, where the environment is subject not only to droughts, but also to 

flooding and erosion phenomena caused by high intensity rainfalls. Those heavy downpours, 

which often occur after a very dry summer, and the high climatic fluctuations in short- and 

long-term have been pointed out as the main climatic characteristics affecting the 

vulnerability of the Mediterranean basin to erosion (Martínez-Casasnovas et al., 2002). 
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In western Mediterranean, the major driving force of desertification is the degradation of 

irrigated lands by overexploitation of water resources, which caused the exhaustion and 

deterioration of aquifers, soil salinization and damage to downstream fluvial and wetland 

systems (Puigdefábregas and Mendizabal, 1998). On the other hand, according to De Luís et 

al. (2001), fire and water erosion are frequently considered major causes of soil degradation 

and desertification in Mediterranean ecosystems. 

There is evidence of a trend towards a drier climate in southern Europe as a result of increased 

evapotranspiration and a relatively slow decrease of rainfall amounts and precipitation 

frequency (Cubasch et al., 1996; Kostopoulou and Jones, 2005; IPCC, 2007; Vicente-Serrano 

and Cuadrat-Prats, 2007). These circumstances will potentially amplify the vulnerability of 

several Mediterranean regions to desertification by increasing their environmental problems, 

such as agro-forestry-grazing productivity, soil degradation, aquifers recharge, forest fires, 

biological diversity and composition (De Luís et al., 2001; Ceballos et al., 2004). 

In the context of the MEDALUS project, Kosmas et al. (1999) proposed a methodological 

approach to identify and map environmentally sensitive areas to desertification, based on a 

choice of appropriate indicators at relevant scales (see Section 2.1.2 Desertification 

indicators). In this context, the physical loss of soil by water erosion, and the associated loss 

of soil nutrient status, was identified as the dominant problem, whereas wind erosion and 

salinization problems were considered less significant. 

2.1.3.1 Implementation of the Convention to Combat Desertification in Portugal 

Portugal ratified the Convention to Combat Desertification (CCD) on April 1, 1996. The 

National Action Programme (NAP) elaboration process occurred between December 1997 

and June 1998, and was approved by the Government on June 17, 1999, Resolution of 

Cabinet number 69/99 (PANCD, 1999). 

The strategic objectives of the NAP can be summarized as follows: conservation of soils and 

water; settling of active population in agricultural areas; recovery of affected areas; 

population awareness of the desertification problem; consider the fight against desertification 

in the general and sector politics. The operation guidelines established in the NAP were 

developed and executed based on interdisciplinary scientific and technical information given 

by different organisations and with the support of the civil society. 
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Accordingly, the NAP was based on a number of projects and initiatives developed with 

government bodies, universities and scientific research centres, among other activities taken 

by public and private organisms. For example, a number of partnerships have been established 

in the framework of several projects, such as: 

 CLEMDES – Clearing House Mechanism on Desertification for the Northern 

Mediterranean Region (http://www.inea.it/clemdes1/, retrieved 27 March 2008); 

 DESERTLINKS – Combating Desertification in Mediterranean Europe: Linking Science 

with Stakeholders (http://www.kcl.ac.uk/projects/desertlinks, retrieved 27 March 2008); 

 DesertWatch – European Space Agency Desertification Monitoring Service 

 http://dup.esrin.esa.it/desertwatch, retrieved 27 March 2008); 

 DIS/MED – Desertification Information System to support National Action Programmes 

in the Mediterranean (http://dismed.eionet.europa.eu, retrieved 27 March 2008; DISMED 

Central Data Repository, http://cdr.dismed.eionet.europa.eu, retrieved 27 March 2008); 

 MEDACTION – Policies for Land Use to Combat Desertification 

(http://www.icis.unimaas.nl/medaction, retrieved 27 March 2008). 

By the time of the NAP design, a first attempt was made to identify and map the susceptible 

areas to desertification using three categories of indices: climate, soil loss and drought. At this 

stage, the climate index was defined as the ratio of the annual average precipitation to the 

average annual potential evapotranspiration calculated by the Penman method. The soil loss 

index combined four determinant factors of the erosive process: erosion by precipitation, soil 

type, vegetation cover and slope of hillsides. The drought index was based on the proportion 

of years with annual precipitation below the 0.01 quantile of the lognormal distribution. These 

three indices were then combined, using a geographical information system (GIS), in order to 

obtain the desertification susceptibility index. 

According to Pimenta et al. (1997), one of the weaknesses of this approach is the climate 

index, although proposed by the UNEP (1992) as a first aridity indicator, because it does not 

reflect the water stresses attached to the soil moisture. Pimenta et al. (1997) developed an 

extension of that methodology, assumed by the DISMED Portuguese Group, which used a 

redefinition of the climate index based on the monthly water balance. The combination of the 

three improved indices (climate, soil loss and drought) allowed to conclude that the most 
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vulnerable areas to desertification were located in the southeast (Alentejo region), and in a 

few areas in the north. It was also estimated that 60% of the Portuguese continental territory 

had a moderate risk of desertification. 

The group of indicators proposed by Enne and Zucca (2000), described in Section 2.1.2 

Desertification indicators, includes the indices used by the Portuguese system that were 

developed by Portuguese DISMED, and described in the work of Pimenta et al. (1997). 

A second stage of the Portuguese DISMED, under the coordination of the Focal Point4, aimed 

to update the susceptibility map of desertification of the NAP (Pimenta et al., 1997), and 

answer the demands at the level of the Mediterranean implementation (Rosário, 2004a). In 

this phase, the approach was inspired by the methodology developed in the framework of the 

MEDALUS project (see Section 2.1.2 Desertification indicators) and on the set of indices 

proposed by Enne and Zucca (2000). As proposed by Kosmas et al. (1999), the final 

susceptibility map of desertification of the NAP identifies the vulnerable areas through an 

indicator combining four quality indices (Figure 2.5 of Section 2.1.2): soil, climate, 

vegetation, and management/land use. It is important to point out that Kosmas et al., (1999) 

proposed to merge the four layers by computing the geometric average of the four indices, 

whereas the Portuguese DISMED overlapped the four composite indices without any 

additional computations. 

The maps of the four composite indices and the final susceptibility map of desertification of 

the NAP (Rosário, 2004b), are available at http://panda.igeo.pt/pancd (retrieved 30 March 

2008). Moreover, even though socio-economic factors were not directly accounted for in 

mapping the susceptibility to desertification, additional sets of social and economic indicators, 

reflecting cause or effect relationships with the biophysical features of desertification, were 

also adopted by the Portuguese DISMED and included in the NAP (Rosário, 2004b). 

Rosário (2004b) describes the definitions and characteristics of the four composite indices, 

which are summarized in Table 2.3. For example, the index of climate quality corresponds to 

the aridity index defined as the ratio of the annual average precipitation to the annual average 

potential evapotranspiration. The annual average precipitation for the period 1959/60 – 

                                                 

4 President of the Coordinating Committee of Portuguese NAP. 
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1990/91 (hydrological years) was mapped through kriging using elevation as external drift, 

with a spatial resolution of 1 km ×1 km, by Nicolau (2002). This work will be further 

described in Section 2.3.2 Overview of interpolation techniques (Table 2.6). The annual 

average potential evapotranspiration for the period 1961–1990 was mapped through ordinary 

kriging. The aridity index map corresponds to the ratio of these two maps. 

The susceptibility map of desertification allows concluding that, under the mean climatic 

regime evaluated, 36% of the Portuguese continental territory is susceptible to desertification. 

Nevertheless, there are a significant number of regions, on the remaining 64% of the territory, 

with soils ranging from susceptible to highly susceptible to drought and desertification, 

regardless of the climatic conditions (Rosário, 2004b). The most vulnerable regions 

correspond to extensive areas of the Algarve and Alentejo regions, in the south of the country, 

and a few more areas in the centre-east and northeast (inland regions). These results agree 

with the preliminary findings of Correia (2004). 

Table 2.3 – Parameters, indicators and indices of desertification susceptibility in continental 
Portugal (adapted from Rosário, 2004b) 

DESERTIFICATION SUSCEPTIBILITY 

Aridity index Soils susceptibility 
index 

Vegetation quality 
index Land use quality index 

 Annual average 
precipitation 
(1959/60 – 
1990/91) 

 Annual average 
potential 
evapotranspiration 
(1961–1990) 

 Thickness 

 Permeability 

 Structural stability 

 Rockiness 

 Drainage 

 Slope gradient 

 Fire risk 

 Drought resistance 

 Erosion protection 

 Vegetation cover (% 
horizontal cover) 

 Structural cover 
(presence of vertical 
strata) 

 Climax proximity 
(degree of natural 
potential vegetation) 

 Urban, industrial and 
tourist areas (actual 
and projected) 

 Wet areas (e.g., lakes) 

 Irrigated land 

According to Rosário (2004b), several issues should be further addressed: 

- The development of indicators and maps with higher spatial resolution in order to 

support the regional/national planning; 
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- The development of indicators of the dynamics of desertification processes and 

drought, at national and regional levels, capturing the trends and variability hidden 

behind "the means"; 

- The development of indicators of the uncertainty of the produced maps, which should 

be based on the quality of the different information levels, on the lack of knowledge of 

the different physical phenomena, and on the typical variability of those phenomena 

connected to desertification; 

- The organization and development of work processes at Iberian level and with Spanish 

institutions aiming to establish coherent and consistent results along the country 

border, even if with lower spatial resolution; 

- The institutional (internal and external) extension of the DISMED process by 

reinforcing the network of associations, information and work that was established 

through DISMED. 

Pereira et al., (2006) describe the identification of the areas susceptible to desertification in 

Portugal and discuss the insufficiency of the used indicators, mainly in relation to the climatic 

driving forces and the need to include socio-economic indicators. These authors argue that the 

aridity index map is not fully appropriate to map the areas susceptible to desertification 

because it is based on average computations and, consequently, it does not account for 

droughts, which are part of the climate driving forces influencing desertification. Moreover, in 

their opinion, such a climate index should also be an indicator of water resources availability, 

which is impacted by droughts. 

2.1.3.2 Causes and impacts of desertification in Portugal 

According to Pereira et al. (2006), the desertification processes that affect the south and the 

inland regions of Portugal correspond to large areas where water resources are scarce, soil 

resources are often poor and non-agricultural vegetation is far from climax. Moreover, in 

these regions, population density is very low and the respective growth rate is highly negative, 

aging is increasing with the dependency on aged people, illiteracy is above average, and the 

purchasing power of the population is much lower than average. 

In southern Portugal, a combination of population growth and a cereal self-sufficiency policy 

increased the desertification phenomenon since the beginning of the twentieth century 

(Puigdefábregas and Mendizabal, 1998; Roxo et al., 1999). In recent years, as in other 
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southern regions of Europe, a disinvestment in labour caused agriculture and land 

abandonment, and the soils left behind were exhausted and degraded (Puigdefábregas and 

Mendizabal, 1998; Geist and Lambin, 2004). 

The Algarve and Alentejo regions, in the south of the country, have large areas with high 

susceptibility to desertification (Correia, 2004; Rosário, 2004b). The southern part of the 

territory, especially the Alentejo region, is a drought prone area that is characterized by scarce 

precipitation, little runoff and water availability. Several studies characterized the local and 

regional droughts of these regions (e.g., Paulo et al., 2003; Paulo et al., 2005; Moreira et al., 

2006) and, more generally, the drought phenomenon over Portugal (e.g., Santos, 1998; Santo 

et al., 2005). 

Soil erosion is one of the major environmental problems to be faced in these regions (Loureiro 

and Coutinho 1995, 2001). Water deficits are of great ecological and agronomic importance, 

especially during the dry season, and an irregular precipitation regime highly influences the 

productivity of rain fed agriculture. 

As other southern European regions, the rainfall regime in southern Portugal is 

Mediterranean, and so highly variable in both the spatial and temporal dimensions. 

Accordingly, the climate is characterised by a dry and very hot season, and a very irregular 

distribution of precipitation over the wet season, as well as over the years, with very intense 

flood peaks and with frequent drought periods. As discussed previously, whenever the 

precipitation variability is associated with extreme phenomena, such as intensive rainfall 

events or drought situations, it may cause soil degradation and vegetation loss that contribute 

to the desertification of the most vulnerable regions (Santo et al., 2004). 

One particularly relevant feature of the rainfall regime in southern Portugal is the occurrence 

of short but very intensive rainfall events that may lead to significant damages, by causing 

flash floods that affect small drainage basins (Ramos and Reis, 2002), and high rates of soil 

erosion (Pimenta, 1998; Ó and Roxo, 2001). Fragoso and Gomes (2008) concluded that the 

most southern region (Algarve) is the one where episodes of heavy rainfall are most frequent 

and exhibits the strongest torrential character. The Alentejo area, north of Algarve, is mainly 

an agro-silvo-pastoral region and the most affected by desertification and drought (e.g., Roxo 

et al., 1999; Santo et al., 2004). 
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The application of the methodology developed within the MEDALUS project (see Section 

2.1.2 Desertification indicators) to the Mértola municipality (Alentejo) resulted on a map of 

environmentally sensitive areas to desertification, providing an identification of affected and 

fragile areas that need carefully defined management strategies in terms of land use and 

human intervention (Roxo et al., 1999). The core desertification problem identified in this 

region was the physical and chemical soil degradation caused by the destruction of natural 

vegetation cover and the continuous and intensive use of soil resource. The critical areas exist 

somehow all over the municipality and correspond to areas of greater agricultural activity or 

with severely eroded soils. According to Roxo et al. (1999), the climatic characteristics of this 

region, associated with topographic and land use factors, have favoured desertification for a 

long time in the past, with very negative consequences for natural resources such as soil, 

water and vegetation and ecosystems present. 

2.2 Homogenization of climate time series 

A homogeneous climate time series is defined as one where variations are caused only by 

variations in climate (Aguilar et al., 2003). Non-climatic factors (monitoring stations 

relocations, changes in instrumentation, changes of the surroundings, instrumental 

inaccuracies, changes of observational and calculation procedures, etc.) may hide the true 

climatic signal and patterns, and thus potentially bias the conclusions of climate and 

hydrological studies. 

Unfortunately, few long-term climate time series are free of irregularities (e.g. Reek et al., 

1992; Peterson et al., 1998; Allen and DeGaetano, 2000; Tuomenvirta, 2001; Auer et al., 

2005). Consequently, it is an important task to assess the homogeneity of long climate records 

before they can be reliably used, and as a recent World Meteorological Organization (WMO) 

publication recommends, ‘it is important, therefore, to remove the inhomogeneities or at least 

to determine the possible error they may cause’ (Aguilar et al., 2003). 

Several techniques have been developed for non-climatic inhomogeneities detection and 

adjustment, i.e. homogenization. If the identified irregularities are due to non-climatic factors 

then adjustments are performed to compensate for the biases produced by the 

inhomogeneities. The approaches underlying the homogenization techniques are quite 
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different and typically depend on the type of element (temperature, precipitation, pressure, 

evaporation, etc.), the temporal resolution of the observations (annual, seasonal, monthly or 

sub-monthly), the availability of metadata (station history information) and the monitoring 

station network density (spatial resolution). The inherently high (temporal and spatial) 

variability of precipitation makes homogenization of precipitation records more difficult to 

accomplish than other elements (e.g. temperature). 

Some tests rely on metadata (direct methods) while others use a variety of statistical 

techniques and may be used for homogeneity testing series for which station history is poorly 

documented or metadata are totally missing (indirect methods). When the station network is 

dense enough, a common approach is to use difference (temperature, pressure) or ratio 

(precipitation) series between a candidate (or target) station and its neighbouring stations 

(reference stations). Afterwards, statistical tests are applied to these composite series for 

inhomogeneities detection (e.g., Menne and Williams, 2005). 

Even though it is becoming very common to develop homogenized climate databases (Tayanç 

et al.,1998; Easterling et al., 1999; Eischeid et al., 2000; Tuomenvirta, 2001; Wijngaard et al., 

2003; Feng et al., 2004) or to perform homogenization procedures prior to analyzing data 

(e.g.; Klein Tank et al., 2002; Llasat and Quintas, 2004; Begert et al., 2005), there are some 

arguments against homogenizing (Peterson et al., 1998; Auer et al., 2005) and two of them 

are particularly relevant for the analysis of extreme precipitation. A first argument states that 

when the monitoring station network is large, the inhomogeneities are expected to become 

random and hence they can be neglected. Another argument is the danger of smoothing the 

existing spatial variability by transmitting distant climatic signals from one (or few) reference 

series to many homogenized series. 

As stated before, most of long-term climate time series have inhomogeneities, which can 

potentially bias the conclusions of climate studies. Furthermore, precipitation measurements 

are particularly susceptible to irregularities (e.g. station relocations) that may affect the 

analysis of extreme precipitation events. Therefore, as expressed in the WMO 

recommendations (Aguilar et al., 2003) and by several authors (e.g. Tayanç et al.,1998; 

Tuomenvirta, 2001; Auer et al., 2005), at least some basic homogeneity testing should be 

performed before using climate databases, but any kind of adjustment should be carefully 

considered. It is advisable to seek confirmation of detected inhomogeneities using station 
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history information before proceeding with the adjustments (Begert et al., 2005). If the 

irregularities are due to non-climatic factors then the climate series should be rejected from 

the analysis or properly adjusted. 

The second argument against homogenizing is also related with adjustments and is 

particularly relevant for studies on climate extremes. Some adjustment methods, such as 

regression-based techniques that are known to smooth the existing spatial and temporal 

variability of data, should be used cautiously, especially when extreme precipitation totals are 

to be studied. 

Further difficulties arise when attempting to homogenize data with high temporal resolution. 

Most of the statistical procedures, including nonparametric tests, require serially independent 

data. Their application may be suitable for annual data, as the independency assumption can 

be relaxed. Nevertheless, a common approach when homogenizing monthly data is to form 

individual time series for each month separately, and thus cope with serial dependence and 

seasonality. However, the existence of serial correlation in daily time series will affect the 

ability of the tests to assess correctly the significance of trends or shifts in the mean (or 

median). 

More than one undocumented inhomogeneity may be present in a climate time series. 

According to Reeves et al. (2007), in the ideal case, all possible breakpoints should be 

identified jointly before their mean shift magnitudes are estimated. However, the number of 

multiple breakpoints detection procedures is limited, thus this is an active current area of 

statistical research (Reeves et al., 2007). 

Moreover, for precipitation series with high temporal resolution (sub-monthly data) finding 

the proper adjustment technique is not straight forward and new approaches will have to be 

developed (Easterling et al., 1999; Aguilar et al., 2003; Wijngaard et al., 2003; Auer et al., 

2005). 

2.2.1 General issues 

Non-climatic inhomogeneities in climate time series may be introduced by an abrupt change 

(i.e. break, ‘jump’, step or shift in the mean), by a gradual trend or by a jump superimposed 

on a trend. A break could result from a recalibration of an instrument or station relocation; a 
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linear trend could result from a gradual but constant degradation of a sensor; and a non-linear 

trend could result from vegetative growth around the instruments. The homogenization 

procedures aim to determine the occurrence and magnitude of such irregularities in order to 

avoid erroneous and inconsistent inferences from the records. 

Two groups of homogeneity testing techniques can be distinguished and are usually referred 

to as absolute methods and relative methods. In the first set of procedures, the statistical tests 

are applied to each station data separately. In the second one, the testing procedures use 

records from neighbouring stations (named reference stations) which presumably are 

homogeneous. 

While both approaches are worthwhile and valid, they each have drawbacks. Using only data 

from an individual station is problematical because it is difficult to determine if changes or 

lack of changes result from non-climatic or climatic influences (Peterson et al., 1998). 

However, this problem can be reduced, or even solved, by making use of station history 

information. 

Relative methods intend to isolate the non-climatic influences. They assume that within a 

geographical region, climatic patterns will be identical and that observations from all sites 

within the region will reflect this identical pattern. Data collected at all sites within the same 

climatic region should be highly correlated, have similar variability, and differ only by scaling 

factors and random sampling variability. 

Regarding the relative approach, problems arise when the inhomogeneities in the climate data 

series are caused by simultaneous changes in the observational network, such as simultaneous 

changes in the measuring technique, as relative tests become insensitive since all series are 

affected at the same time (Lanzante, 1996; Tuomenvirta, 2001; Wijngaard et al., 2003). 

Furthermore, ambiguous conclusions are possible when several neighbouring stations do have 

inhomogeneities themselves (Tayanç et al., 1998; Boissonnade et al., 2002). 

Another disadvantage of relative methods is that the use of composite reference series (see 

Section 2.2.1.1 for details) depends on the proper selection and weighting of individual series, 

which requires a rather dense station network. In this sense, the absolute tests are more widely 

applicable, even though they are more dependent on the availability of metadata. 
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On the other hand, Auer et al. (2005) argue that the choice of a specific test method is of 

minor importance and discuss seven principles that are of major relevance for the 

homogenization process of monthly data. We quote five of them that are appropriate 

regardless of the data temporal resolution: 

1. Ignore any previous homogeneity work undertaken for any of the series (i.e. assume 

that all series contain potential breaks). 

2. Test in small, well-correlated subregions (a maximum of 10 series tested against each 

other results in a 10 x 10 matrix, which enables most breaks detected to be assigned to 

a most likely candidate series). 

3. Choose the most appropriate reference series with a non-affected subinterval for the 

adjustment of each break detected (i.e. different reference series can be used for each 

break detected in a candidate series). 

4. Attempt to determine support for homogeneity adjustments when few metadata are 

available (i.e. contact data providers for more information in difficult cases). 

5. Give preference to good metadata rather than mathematical methods in all cases, 

especially where adjustment factors can be calculated directly from sufficiently long 

series of parallel measurements. 

Menne and Williams (2005) evaluated three hypothesis test statistics5 to ascertain whether 

multiple tests can be combined to improve overall confidence in undocumented 

inhomogeneities detection. These authors also evaluated different composite reference series 

formulations. Using Monte Carlo case studies, Menne and Williams (2005) concluded that for 

reasonably well correlated time series and if the reference series are homogeneous, the choice 

of reference series formulation has relatively little impact on candidate series inhomogeneities 

detection skill and, consequently, the choice of the test statistic has a greater impact. 

However, Menne and Williams (2005) argue that those circumstances are probably rare in 

practice, thus the choice of reference series formulation has implications that are more 

important in breakpoints detection than the choice of the test statistic. 

                                                 

5 Methods evaluated by Menne and Williams (2005): (1) SNHT for a single break, (2) two-phase 
regression, and (3) two-phase regression without slope. 
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2.2.1.1 Relative approaches issues 

As pointed out before, if an absolute test detects a break in a station’s time series it may 

indicate an inhomogeneity or it may simply indicate an abrupt change in the regional climate. 

In order to account for regional climate changes and to isolate the effects of station 

irregularities, many techniques use data from surrounding stations inside the same climatic 

region (reference stations). 

The most common approach for selecting reference stations is to form Pearson correlation 

matrices between the candidate site and neighbouring stations' data, which presumably are 

homogeneous, and to take as reference the highest correlated ones (e.g. Tayanç et al., 1998; 

Boissonnade et al., 2002). Other approaches extract principal components from the whole 

data network, or use an independent data source thought to be homogeneous (Aguilar et al., 

2003). 

Some procedures search for breakpoints or artificial trends in a composite reference series (or 

alternatively in the data when a suitable composite series cannot be built), while some 

statistical tests compare the candidate data series with data from reference stations (e.g., tests 

for the difference between medians). Using composite reference series – ratio series for 

precipitation and difference series for temperature – is a standard procedure in the detection of 

non-climatic homogeneities. The assumption from this approach is that the composite 

reference series includes the regional climate trends and fluctuations present in the data of the 

candidate, but does not contain discontinuities itself during the period of analysis of the 

discontinuity in the candidate station. Composite reference series attempt to reduce, if not to 

eliminate, most of the climatic signals, and thus diminish some of the problems that were 

previously discussed concerning relative methods. 

Composite reference series, or simply reference series, are computed as a weighted average of 

data from neighbouring stations by using some measure of statistical similarity (usually the 

correlation coefficient or an inverse function of the distance) between them. Romero et al. 

(1998) proposed a combined use of those measures in order to increase the contribution of the 

records from closer stations, both in spatial and correlation terms. Alexandersson and Moberg 

(1997) proposed the construction of ratio (difference) reference series, which are generally 

used in precipitation (temperature) studies. If the candidate has no inhomogeneities then the 
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resulting ratio (difference) series will oscillate around one (zero); otherwise, one or more 

irregularities due to non-climatic factors will be uncovered. 

The most usual approach to obtain adjustment factors is to calculate separate averages on the 

difference or ratio series for the two sections defined by a breakpoint (Aguilar et al., 2003). 

When abrupt changes are identified in the time series, the obtained means are compared by 

calculating their ratio or difference and the obtained factor is applied to the inhomogeneous 

part. When dealing with gradual trends or breakpoints superimposed on trends, the 

inhomogeneous section is de-trended using the slope calculated on the difference or ratio time 

series. 

Creating and using composite reference time series may encounter two major problems: 

1. lack of data to build them, because the monitoring stations network was, or is, too 

sparse to find enough neighbouring stations to construct a reliable reference; 

2. a number of series from the neighbouring stations have inhomogeneities. 

The common period of observations between the candidate series and time series from 

neighbouring stations might be too short to properly select and weight the individual series, 

and thus construct a reliable reference. Moreover, if too many distant (or less correlated) 

neighbouring stations are used, the resulting reference may not reflect properly the true 

climatic signal of the candidate station (Boissonnade et al., 2002). Regarding the second 

problem, as mentioned before, ambiguous conclusions are possible when several 

neighbouring stations do have inhomogeneities themselves. 

These difficulties may increase dramatically with the increase in spatial variability of the data 

caused by the inherent variability of the element (e.g. precipitation), the time series resolution 

(e.g. sub-monthly data) or the network location. Aguilar et al. (2003) provide a clarifying 

example: ‘it is intuitively very understandable that it is easier to create a good reference time 

series for annual averaged temperatures for a station at the equator than building a reference 

for August precipitation for a station in the Mediterranean’. Further problems arise when 

attempting to build a precipitation ratio series in the Mediterranean, where zero-precipitation 

summer months typically occur. 
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2.2.2 Procedures for monthly, seasonal and annual data 

Several widely used techniques for inhomogeneity detection and homogenization are 

summarized. A few descriptions and references were obtained from Peterson et al. (1998) and 

Aguilar et al. (2003) who give a comprehensive review of methods. The listing of procedures 

is presented in alphabetical order, without distinguishing between absolute and relative 

methods, since absolute tests can also be used in relative approaches by applying the test to 

composite reference series. 

Subjective methods (e.g. Boissonnade et al., 2002), such as the well known double-mass 

analysis (Kohler, 1949), will not be presented despite the fact that they may be particularly 

helpful in exploratory data analysis. Other common homogenization procedures mentioned in 

the literature, but not described here, are: the Craddock test (Craddock, 1979; Auer et al., 

2005; Begert et al., 2005); the Potter’s method (Potter, 1981; Begert et al., 2005); the Rank-

order change point test (or L-method) proposed by Lanzante (1996); and the Mann-Whitney 

U test, also called the Mann-Whitney-Wilcoxon, Wilcoxon rank-sum test, or Wilcoxon-

Mann-Whitney test (Wilcoxon, 1945; Mann and Whitney, 1947; Lanzante, 1996; Lee and 

Maeng, 2003). The procedures described subsequently are intended to illustrate the variety of 

approaches that are commonly used. The literature is replete with techniques, but most of 

them are similar or variations of the methodologies described here. 

Ducré-Robitaille et al. (2003) compared eight homogenization methods6 using simulated 

series reproducing a vast range of possible situations (homogeneous series and series having 

one or more breakpoints). Their results show that the most reliable techniques for the 

identification of homogeneous series are the Standard normal homogeneity test (SNHT) for a 

single break, the multiple linear regression and the Bayesian approach with reference series. 

Moreover, Ducré-Robitaille et al. (2003) concluded that the SNHT for a single break is the 

best approach to identify a single small step, to detect a random number of irregularities, and 

to identify the correct number of breakpoints. The methods examined by Reeves et al. (2007) 

include the SNHT, the Wilcoxon’s nonparametric test, two-phase regression procedures, 

                                                 

6 Methods evaluated by Ducré-Robitaille et al. (2003): (1) standard normal homogeneity test (SNHT) 
for a single break; (2) SNHT with trend, (3) multiple linear regression, (4) two-phase regression, (5) 
Wilcocon rank-sum test, (6) sequential testing for equality of means, (7) Bayesian approach without 
reference series, and (8) Bayesian approach with reference series. 
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among other inhomogeneity tests and various variants thereof. Their results indicate that the 

common trend two-phase regression and Sawa’s Bayes criteria procedures seem optimal for 

most climate time series, whereas the SNHT procedure and its nonparametric variant are 

probably best when trend and periodic effects can be diminished by using homogeneous 

reference series. 

It is also important to mention that several homogenization techniques described 

subsequently, particularly tests for single break detection, are some times used iteratively by 

systematically dividing the tested series into smaller segments when a break is detected, and 

then performing the test on those segments. Techniques that use series from surrounding 

stations, some times run the test once, relying the reference to be homogeneous, or engage in 

an iterative procedure in which all stations in the dataset are seen consecutively as candidates 

and references. Procedures based on test iteration such as those are powerful but 

computationally intensive, and thus can be time consuming and exacting work. 

2.2.2.1 Buishand range test 

The Buishand range test (Buishand, 1982) is a parametric test and supposes, under the null 

hypothesis, that the values of the testing variable are independent and identically normally 

distributed. Under the alternative hypothesis, it assumes that a step-wise shift in the mean (a 

break) is present. Wijngaard et al. (2003) extend the table of critical values for the test given 

by Buishand (1982) and also provide a mathematical description. This test is capable of 

locating the period (year/month) where a break is likely, but it is more sensitive to breaks in 

the middle of a time series (Wijngaard et al., 2003). 

For example, Wijngaard et al. (2003) applied this test (among other homogenization 

techniques) to three variables, with annual resolution, derived from the daily series of the 

European Climate Assessment dataset for the period 1901-1999: the annual mean of the 

diurnal temperature range; the annual mean of the absolute day-to-day differences of the 

diurnal temperature range; and, the wet day count (threshold 1 mm). 

Another example of the application of the Buishand range test can be found in Feng et al. 

(2004). These authors describe the development of a climate dataset that contains 10 daily 

variables with data from 726 stations in China from 1951 to 2000: maximum and minimum 

surface air temperatures, mean surface air temperature, skin surface temperature, surface air 
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relative humidity, wind speed, wind gust, sunshine duration hours, precipitation, and pan 

evaporation. The homogenization procedures include the application of the Buishand range 

test to annual reference series. 

2.2.2.2 Caussinus-Mestre technique 

The method proposed by Caussinus and Mestre (1996) is based on the premise that between 

two breaks, a time series is homogeneous and these homogeneous sections can be used as 

reference series. This approach allows accounting for the detection of multiple breaks. 

Each single series (candidate) is tested for discontinuities by means of the differences 

(temperature, pressure) or ratios (precipitation) series that are constructed using neighbouring 

stations from the same climatic area. When a detected break remains constant throughout the 

set of comparisons of a candidate station with its neighbours, the break is attributed to the 

candidate time series. 

Instead of comparing a series to an artificial reference, Caussinus and Lyazrhi (1997) 

developed a new technique based on the comparison of several perturbed series. They 

formulated it as a problem of testing multiple hypotheses, and provided a Bayes invariant 

optimal multi-decision rule for detecting a set of an unknown number of change-points and 

outliers based on a penalized log-likelihood statistic. The penalty term curbs the increase in 

the likelihood and picks the solution with the right number of breaks most of the time 

(Peterson et al., 1998). 

2.2.2.3 Kruskal-Wallis test 

The Kruskal-Wallis test (Kruskal, 1952; Kruskal and Wallis, 1952) is a well known 

nonparametric (or distribution free) test used to compare two7 or more independent groups of 

sampled data. One of the assumptions of the Kruskal-Wallis test is that the observations are 

drawn randomly and independently from their respective populations. This test is an 

alternative to the independent group ANOVA F test (which compares the means of several 

groups), when the assumption of normality is not met. 

                                                 

7 When comparing only two populations, the nonparametric Mann-Whitney U test is sometimes 
preferred. 
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This, like many nonparametric tests, uses the ranks of the data rather than their raw values to 

calculate the test statistic. By using ranks, the impact of any outliers or skewness in the data is 

greatly diminished, allowing for a test that is not dependent on the data coming from a normal 

distribution. 

The null hypothesis for the Kruskal-Wallis test is that all the samples come from identical 

populations. The alternative hypothesis is that not all of the samples come from identical 

populations. If all of the population distributions have the same shape (normal or not), these 

hypotheses are also sometimes written as the testing of the equality of the central tendency of 

the populations (i.e. testing whether all the independent samples have been drawn from 

populations possessing equal medians). The exact distribution of the Kruskal-Wallis statistic 

under the null hypothesis depends on all the sample sizes, so tables are awkward. However, 

the test statistic is distributed approximately as a chi-square distribution when the null 

hypothesis holds and when the sample sizes are not too small (greater than 5), making it easy 

to obtain p-values. 

The Kruskal-Wallis test gives little information about the probable date for a shift in the 

median and no information about the magnitude of the break. 

Tayanç et al. (1998) tested the efficiency of the Kruskal-Wallis test using artificially 

generated time series. These authors also used it in the homogenization process of 82 annual 

temperature series of Turkish stations for the period 1951-1990. Another application of this 

test in the homogenization context was also performed by Türkes (1999). 

2.2.2.4 Mann-Kendall test 

The Mann-Kendall test is a nonparametric test for the detection of trend in a time series. Since 

the first proposals of the test by Mann (1945) and Kendall (1975), the test was extended in 

order to include seasonality (Hirsch et al., 1982; Hirsch and Slack, 1984), multiple time series 

(Lettenmaier, 1988) and covariates (Libiseller and Grimvall, 2002). The Mann-Kendall test 

requires data to be serially independent. Yue and Wang (2004) discuss several approaches 

that use the effective sample size to modify the test statistic in order to eliminate the effect of 

serial correlation. 

An assumption of trend tests is that trends are consistently increasing or decreasing, otherwise 

known as monotonic changes. The Mann-Kendall test is traditionally used to test randomness 
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against (monotonic) trend. The null hypothesis is that the data are independent, identically 

distributed random quantities and the alternative is that a stochastic trend exists. The rank-

based test statistic is distributed approximately as a normal distribution when the null 

hypothesis holds and when the sample size is not too small (greater than 8). 

For example, Tarhule and Woo (1998) used the Mann-Kendall ranked τ statistic to analyse the 

occurrence of trends in several rainfall characteristics using data collected at 25 locations in 

northern Nigeria for the period 1931-1996. Another application of the Mann-Kendall test in 

the homogenization of precipitation series can be found in Santos and Henriques (1999). 

2.2.2.5 Multiple analysis of series for homogenisation (MASH) 

The MASH method was developed in the Hungarian Meteorological Service (Szentimrey, 

1994, 1995a, 1995b, 1996, 1999), and is a relative homogeneity test procedure that does not 

assume that the reference series are homogeneous. MASH is a multiple break points detection 

technique that takes into account the significance and the efficiency of the test. Moreover, it 

provides not only estimated break points and shift values, but the corresponding confidence 

intervals as well, and hence the series can be adjusted by using the point and interval 

estimates. Another feature of MASH is that an additive or a cumulative model can be used 

depending on the climate elements (e.g. temperature, precipitation). The theoretical basis of 

the method can be found in Szentimrey (1999). 

Possible break points and shifts can be detected and adjusted through mutual comparisons of 

series within the same climatic area. The role of series (candidate or reference series) changes 

step by step in the course of the procedure. 

An interesting feature of the software developed for this method (MASH system) is that the 

probable dates of break points provided by metadata information can be used automatically. 

In case of having monthly series for all the 12 months, the MASH system also allows the 

monthly, seasonal and annual series to be homogenized together. More recently, Szentimrey 

(2003) introduced in the MASH system a new procedure to evaluate the homogenization 

results. The verification procedure evaluates the quality of the homogenized series by the joint 

comparative mathematical examination of the original and the homogenized series systems. 

For other applications with the MASH system, see for example Griffiths et al. (2003), Květoň 

and Žák (2003), Piccarreta et al. (2004) and Auer et al. (2005). 
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2.2.2.6 Pettit test 

Pettit (1979) developed a nonparametric test that is capable of locating the period (month or 

year) where a break is likely. The null hypothesis is that the data are independent, identically 

distributed random quantities and the alternative is that a step-wise shift in the mean (a break) 

is present. The test statistic is related to the Mann-Whitney statistic. A mathematical 

description and the significance level can also be found in Tarhule and Woo (1998). 

This test is based on the ranks of the elements of a series rather than on the values themselves, 

thus it is less sensitive to outliers than other methods. Like other tests, the Pettit test is more 

sensitive to breaks in the middle of a time series (Wijngaard et al., 2003). 

Wijngaard et al. (2003) use the Pettit test, among others, to assess the homogeneity of the 

European Climate Assessment dataset for the period 1901-1999, and provide a table of critical 

values based on simulations, plus a mathematical description. 

2.2.2.7 Regression-based methods 

This section reviews several regression-based techniques that have been proposed for the 

homogenization of climate time series. Most of them can only be appropriately used with 

annual data, as serial correlation negatively affects the precision of parameter estimates8. 

Nevertheless, we call attention to the regression-based approach used by Feng et al. (2004) to 

detect spatial outliers in daily series (including temperature and precipitation). 

A two-phase regression technique for detecting a change point in the trend of a time series is 

described by Solow (1987). In this method, the regression lines before and after the year that 

is being tested are constrained to meet at that point. Easterling and Peterson (1995a, 1995b) 

developed a variation on this technique in which the regression lines are not constrained to 

meet, and where a linear regression is fitted to the part of the reference series before the year 

being tested and another one after the year being tested. This test is repeated for all years of 

the time series (with a minimum of 5 years in each section), and the year with the lowest 

residual sum of the squares is considered the year of a potential discontinuity. The time series 

is then divided into two at that year and both sub-series are similarly tested. This subdividing 
                                                 

8 If serial correlation is present in data, the least squares estimator will still be unbiased, but no longer 
the best linear unbiased estimator (B.L.U.E). Moreover, in the case of positive serial correlation, 
estimates of standard errors will be biased downward. 



LI T E R A T U R E R E V I E W 

 78

process continues until no significant breaks are found or the time series are too short to test. 

Reeves et al. (2007) discuss a number of variants of the two-phase regression technique. See 

for example Mekis and Vincent (2003) for applications in the homogenization of precipitation 

and temperature series in Canada. 

Lanzante (1996) presents two resistant regression approaches, namely the three-group 

resistant regression and the pairwise slopes method. In the first one, the sample is subdivided 

into three groups based on the abscissas. The median coordinates of the left and right groups 

are used to define a line which serves as a starting point for an iterative process; a special 

procedure insures convergence to a final solution. The second technique involves the 

computation of the slopes defined by all possible pairs of points; the final slope estimate is the 

median of these values. Significance tests are not provided for these regression techniques, 

thus the significance of the Spearman correlation coefficient is used instead. Lanzante (1996) 

argues that the pairwise slopes method seems preferable because of its greater efficiency and 

resistance, even though being more computationally expensive. 

Vincent (1998) proposed a multiple linear regression approach based on the application of 

four regression models to determine whether the tested series is homogeneous, has a trend, a 

single step, or trends before and/or after a step. The dependent variable is the series of the 

candidate station and the independent variables are the series of a number of surrounding 

stations. The first model determines whether the candidate series is homogeneous (in this 

case, the remaining models are not used). The series is considered homogeneous if the 

residuals from the regression are independent normal variables with zero mean and constant 

variance. If there is significant autocorrelation in the residuals (assessed by generalized 

Durbin-Watson tests and by the correlogram), then a second regression is calculated in which 

a linear trend is included. If autocorrelation in the residuals of this second model exist, then 

the model is discarded and a third model is examined. The third regression is calculated for 

sequential increases in the time at which a step can occur. The minimum residual sum of 

squares from these regressions identifies the time of a break. If autocorrelations exist in the 

residuals from the regression with the step, a fourth model is considered. The last regression 

accounts for trends before and after the identified step. The existence of trend provides an 

indication of multiple inhomogeneities in the candidate series. In this case, the series is 

subdivided at the position in time of the identified step and each segment is tested separately 

starting with the first model. The estimated parameters corresponding to steps and trends 
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provide the magnitude of each inhomogeneity. Adjustments are then applied to bring each 

segment into agreement with the most recent homogeneous part of the series. The method 

proposed by Vincent (1998) has been recently improved by Reeves et al. (2007). 

Allen et al. (1998) describe a method of cumulative residuals (Ellipse test or Accumulated 

residual method) that tests if a weather data set is homogeneous using the cumulative 

residuals from the linear regression between the candidate series (dependent variable) and 

data from a neighbouring station (independent variable), or the average observations of 

several surrounding stations inside the same climatic region. The residuals from the regression 

should be considered homoscedastic and independent random variables with mean zero. The 

candidate series can be considered homogeneous if the cumulative residuals are not biased. 

The bias hypothesis can be tested using an ellipse defining the confidence limits. Plotting the 

cumulative residuals against time, using the time scale (interval) of the variable under 

analysis, the accumulated residual curve is obtained. If all the cumulative residuals lie inside 

the ellipse then the hypothesis of homogeneity is not rejected for the significance level 

considered. This test is capable of locating the period (year) where a break is likely to occur. 

An application of the accumulated residual method in the homogenization of annual 

precipitation series can be found in Santos and Henriques (1999). 

Feng et al. (2004) used a linear regression approach in order to detect spatial outliers by 

comparing data from neighbouring stations. Correlation coefficients are computed for each 

month between daily data from the candidate station and the 10 nearest stations. Series with 

large positive correlation coefficients are used to create simple linear regressions between the 

candidate station and each neighbouring station. If more than five neighbouring stations have 

significant correlation with the candidate station at a specific month, than the five 

neighbouring stations with the lowest root-mean-square error of the regressions are chosen. A 

daily value is flagged as suspicious if it falls outside the specified regression-based confidence 

intervals for all pairs of stations chosen. Estimation of missing and suspicious values is also 

based in this regression approach. 

2.2.2.8 Standard normal homogeneity test (SNHT) 

The Standard normal homogeneity test (SNHT) is a parametric test developed by 

Alexandersson (1986) that is capable of locating the period (month or year) where a break is 

likely. The null hypothesis is that the data are independent, identically normally distributed 
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random quantities and the alternative is that a step-wise shift in the mean (a break) is present. 

The SNHT is a likelihood ratio test and it is usually performed on a ratio or difference series 

between the candidate station and reference series. The SNHT detects breaks near the 

beginning and ending of series relatively easily (Ducré-Robitaille et al., 2003; Wijngaard et 

al., 2003). 

There are now variations of this test to account for more than one discontinuity, testing for 

inhomogeneous trends rather than just breaks, and inclusion of change invariance 

(Alexandersson and Moberg, 1997). 

The standard normal homogeneity test is one of the most widely used homogeneity tests (e.g. 

Tuomenvirta, 2001; Hidalgo et al., 2003b; Mekis and Vincent, 2003; Müller-Westermeier, 

2003; Wijngaard et al., 2003; Feng et al., 2004; Auer et al., 2005; Begert et al., 2005). 

2.2.2.9 Von Neumann ratio test 

Von Neumann (1941) proposed a statistic defined as the ratio of the mean square successive 

(year-to-year) difference to the variance. The Von Neumann ratio test is distribution free and 

is not location specific, which means that it gives no information about the date of the break. 

The null hypothesis is that the data are independent, identically distributed random quantities 

and the alternative is that the time series is not randomly distributed. When the sample is 

homogeneous, the expected value of the test statistic is equal to two. 

The Von Neumann ratio test was one of the statistical tests used by Wijngaard et al. (2003) to 

verify the homogeneity of the European Climate Assessment (ECA) dataset for the period 

1901-1999. Those authors also provide a table of critical values and a mathematical 

description. For other applications, see for example Rodriguez et al. (1999), Llasat and 

Quintas (2004). 

2.2.2.10 Wald-Wolfowitz runs test 

The Wald-Wolfowitz runs test is a well-known nonparametric test for randomness (Wald and 

Wolfowitz, 1943), i.e. tests the assumption that the data collected constitute a random sample 

so that each observation or measurement is drawn randomly and independently from its 

population. This test is sensitive to shifts and trend, but gives little information about the 

probable dates for breaks (Tayanç et al., 1998). The null hypothesis is that the process that 
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generates the set of numerical data is random (with respect to the median) over time. For the 

two-tailed test, the alternative hypothesis is that the data set is not randomly distributed. 

A sequence is formed by assigning one of two symbols to each observation, depending on 

whether its measurement falls above or below a certain value (usually the median). A run is 

defined as a consecutive series of similar symbols that are bounded by symbols of a different 

type or by beginning or ending of the sequence. The test statistic is the number of runs present 

in the data, and it is distributed approximately as a normal distribution when the null 

hypothesis holds and when the sample size is not too small (greater than 40). 

The underlying idea of this test is that, if the sequence is randomly generated, the symbol of 

an observation will be independent both of its position in the sequence and of the values of 

the observations that precede it and follow it. For a one-tailed test, the alternative hypothesis 

is that a trend effect is present in the data. In this case, the null hypothesis is rejected if too 

few runs occur. On the other hand, for a one-tailed test in which the alternative hypothesis is 

that a systematic or periodic effect is present in the data, the null hypothesis is rejected if too 

many runs occur. 

Tayanç et al. (1998) tested the efficiency of the Wald-Wolfowitz runs test using artificially 

generated time series. These authors also used it in the homogenization process of annual 

temperature series of Turkish stations for the period 1951-1990. For other applications see for 

example Santos and Henriques (1999), Lee and Maeng (2003). 

2.2.2.11 Data adjustments 

Aguilar et al. (2003) recommend the adoption of a reverse chronological approach to adjust 

annual (monthly) series experiencing more than one discontinuity in which the most recent 

homogeneous period is used as a standard and earlier periods are adjusted to reflect these 

current conditions. By doing so, incoming data in the future will still be homogeneous unless 

further changes occur in the monitoring station. Moreover, even if additional changes take 

place, another advantage of this strategy is that it allows for easier updating (Auer et al., 

2005). 

Allen and DeGaetano (2000) argue that it is also reasonable to base adjustments on the 

longest stationary homogeneous period within a station’s record and then proceed 

chronologically but with the decision to adjust earlier or more recent periods again based on 
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the series length. One advantage of this approach is that the quantity of data that is subject to 

adjustment is minimized. 

Regardless of which approach is taken to define the sequence of adjustments, the adjustment 

factors are usually obtained using the following methods (Aguilar et al., 2003). If a series 

must be adjusted for a sudden shift, a common approach is to calculate separate averages on 

ratio series (for precipitation) for the two sections defined by the breakpoint. Then, the 

obtained means are compared by calculating their ratio and the resulting factor is then applied 

to the inhomogeneous part. When gradual inhomogeneities are detected, the usual approach is 

to de-trend the inhomogeneous section using the slope calculated on the ratio time series. 

Several authors (e.g. Peterson et al., 1998; Tuomenvirta, 2001) use Student’s t-tests to 

determine whether the sample of estimated/adjusted temperature values is significantly 

different from the original data. However, precipitation distributions generally exhibit positive 

skewness, particularly in arid and semi-arid areas, and thus the usual parametric t-tests are not 

appropriate. For this reason, Eischeid et al. (2000) employed the simple ratio test to compare 

the observed versus estimated precipitation values. 

2.2.3 Homogenization of sub-monthly data 

As described in the previous section, there are a number of tests available for the 

homogenization of climate series with low temporal resolution. However, well-established 

statistical methods for the homogeneity testing of sub-monthly precipitation data are lacking 

(Easterling et al., 1999; Aguilar et al., 2003; Wijngaard et al., 2003; Auer et al., 2005). 

Furthermore, adjusting daily and hourly data is not straightforward, thus the WMO makes no 

recommendations regarding adjusting sub-monthly data. As an alternative, the WMO advises 

that data should be carefully evaluated for the impacts of inhomogeneities, and that portions 

of time series with homogeneity problems be excluded from the analysis before using sub-

monthly data in long-term climate change analysis (Aguilar et al., 2003). 

Both parametric and nonparametric tests that were described above look at one or a few of the 

characteristics of a frequency distribution. These characteristics do not include nonlinear 

effects nor do they consider non-climatic influences that affect data in a nonuniform manner, 

such as only during certain weather events, seasons, etc. The daily data may reflect more of a 
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mixture of populations, and are more likely to be affected by nonlinear and nonuniform 

weather events than data that are averaged over a longer time interval. Another drawback is 

that most procedures, including nonparametric approaches, are not appropriate because of the 

assumption that data should be serially independent. 

Common homogenization procedures also fail to detect non-climatic irregularities in sub-

monthly precipitation series because of the higher variability of daily or sub-daily records. 

Assuming that the magnitudes of the levels of change that can be detected in monthly or 

annual data also apply to daily data, the inherent high variability of the daily data leads to 

rather large ranges of undetectable inhomogeneities. 

In order to overcome these difficulties, the homogenization of high temporal resolution 

climate databases is usually performed by using traditional procedures with monthly or annual 

totals, or other variables, derived from the daily series (e.g., Wijngaard et al., 2003; Feng et 

al., 2004), or solely by the use of metadata (Guttman, 1998). 

Wijngaard et al. (2003) developed a hybrid method by compiling from the daily set an annual 

resolution set of variables representing important characteristics of variation at the daily scale, 

and then applying to these testing variables four established statistical tests: the Standard 

normal homogeneity test (SNHT) for a single break (Alexandersson, 1986), the Buishand 

range test (Buishand, 1982), the Pettit test (Pettit, 1979), and the Von Neumann ratio test 

(Von Neumann, 1941). For precipitation, the testing variable used was the wet day count 

using 1 mm as threshold. Due to the sparse spatial distribution of the station network, relative 

methods could not be used. Wijngaard et al. (2003) did not try to adjust the daily series for the 

inhomogeneities detected. Instead, the results of the different tests were condensed into three 

classes (‘useful’, ‘doubtful’, and ‘suspect’) and a qualitative interpretation of the classification 

was given, as well as recommendations for the use of the labelled series in trend analysis and 

variability analysis of weather extremes. 

Feng et al. (2004) estimated missing data and suspicious records that were previously 

screened by several basic quality control procedures using a regression-based approach, 

before proceeding with the homogenization of daily meteorological data. The homogeneity 

check was performed using annual reference time series that were built using the annual 

average value of each variable (except for precipitation for which the method was adapted and 

the annual total precipitation was used). After creating reference series, three statistical tests 
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were used: the moving t-test (Peterson et al., 1998), the Standard normal homogeneity test 

(SNHT) for a single break (Alexandersson, 1986), and the Buishand range test (Buishand, 

1982). Whenever the test results from these methods had discrepancies and station’s metadata 

was not available, the series were visually evaluated and it was subjectively decided whether 

the changes detected had occurred. 

Feng et al. (2004) adjusted the daily series of all variables except precipitation and wing gust. 

Monthly corrections were obtained for the twelve individual months, and the daily 

adjustments were derived from the monthly corrections using a linear interpolation between 

midmonth ‘target’ values that were objectively chosen so that the average of the daily 

adjustments over a given month was equal to the monthly correction. 

2.2.4 Homogenization of precipitation extremes 

Precipitation is one of the most important climate variables. Accurate quantification of its 

observed variability is required for a number of purposes. These include: the climate changes 

monitoring; the validation of numerical weather prediction models, general circulation models 

and regional climate models; the modelling of erosion, runoff and pollutant transport; the 

design and management of irrigation systems, farm management systems and water supplies, 

among other applications for ecosystem and hydrological impact modelling. 

Accurate long-term precipitation series, with at least daily resolution, are required for several 

of those situations, especially those that involve the analysis of extreme precipitation events. 

However, as stated before, most of long-term climate time series have inhomogeneities that 

can potentially bias the conclusions of climate and hydrological studies. 

Furthermore, precipitation measurements are particularly susceptible to irregularities that may 

affect the analysis of extreme precipitation events (Easterling et al., 1999). For instance, 

station relocations may cause an artificial change in observed extremes, particularly in areas 

of heavy rain. 

Most of the rain gauge errors result in less rain being measured by the gauge than what 

actually has fallen. These errors include wind-induced undercatch, heavy rain splash out, and 

gauge wetting. At some point in time, changes in instrument mounting and sheltering might 

have been introduced in order to increase the amount of precipitation caught, and thus 



LI T E R A T U R E R E V I E W 

 85

decrease the measurement error. However, this may have a large effect on the incidence of 

extreme precipitation events and introduces a break in the data time series. 

Undercatch is an issue concerning just about every rain gauge, including those ones 

incorporating windshields and splashguards. Tipping-bucket gauges are well known to 

undercatch precipitation during heavy rainfall events when the precipitation rate exceeds the 

capability of the tipping mechanism to keep up with the water flowing through the gauge. 

Thus, the precipitation gauge type might have changed, causing a huge impact on data 

homogeneity. 

Naturally, the quality control of extreme precipitation values is particularly relevant for this 

study but, unfortunately, it is especially difficult to accomplish. Extremes are rare events that 

frequently arise from a unique set of weather conditions. Determining the proper homogeneity 

adjustment for these unique conditions can be difficult since few extreme records are 

available for the assessment (Aguilar et al., 2003). 

Further difficulties arise when the homogenization of precipitation extremes has to be 

performed in arid and semi-arid regions, where localized convective storms can often give 

large amounts of precipitation at one observing station and a nearby station receives nothing 

(Easterling et al., 1999). Common homogenization techniques based on comparisons with 

neighbouring stations may therefore exclude genuine extremes from the data series. 

Furthermore, most of the homogenization procedures described in the literature (see Section 

2.2.1.1) are only suitable for low temporal resolution data sets. Consequently, the 

homogenization of extremes usually relies on metadata and quality control checks for outliers 

identification (Lanzante, 1996; Easterling et al., 1999; Klein Tank et al., 2002; Wijngaard et 

al., 2003; Feng et al., 2004). 

Although not especially relevant for this work, it is worthwhile mentioning the method 

developed by Allen and DeGaetano (2000) to homogenize non-climatic discontinuities in 

temperature extreme exceedence series, as their approach seems promising for the 

homogenization of daily temperature datasets. 
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2.3 Characterization of extreme precipitation events 

Climate extremes are events rarely observed and statistically correspond to the tails of the 

distribution of the climate variable. Changes in extremes correspond to changes in the 

distribution (location, scale and/or shape) of the variable. The analysis of changes in extremes 

can be performed by fitting appropriate theoretical distribution functions, named GEV 

(Generalized Extreme Values) distributions, to the observed daily climate data and then 

investigate the changes in the parameters of the distribution functions over time or space (e.g. 

Weisse and Bois, 2001; Durrans and Kirby, 2004; Beguería and Vicente-Serrano, 2006). 

Another approach allowing to identify changes in climate extremes is based on the analysis of 

climate indices. Indicators characterizing extreme events can be estimated from the empirical 

distribution of the daily observations, and their changes analysed directly. 

Hundecha and Bárdossy (2005) point out that, using the GEV approach, the assumption made 

about the distribution function may not be met by many stations, which is a serious practical 

limitation when analysing data from many stations, thus the results of the analysis may lead to 

a wrong interpretation of the changes in the extremes. Considering this and other arguments, 

Hundecha and Bárdossy (2005) argue that nonparametric approaches based on extreme 

climate indicators can be more appropriate to analyse changes in climate extremes than the 

GEV approach. In general, these indicators represent events that occur several times per 

season or year giving them more robust statistical properties than measures of extremes that 

are far enough into the tails of the distribution so as not to be observed during some years 

(Alexander et al., 2006). 

In fact, as revealed by Frich et al. (2002), the WMO Commission for Climatology (WMO-

CCL) and the Climate Variability and Predictability (CLIVAR) Joint Working Group on 

Climate Change Detection held a meeting in Geneva in November 1999 and recommended 

the development of indices focusing on indicators of changing extremes. Later, Frich et al. 

(2002) realised that time series based on just a few extreme events per year or season, or very 

rare events with large return periods, would rarely provide the robustness needed on 

traditional seasonal and regional scales. Hence, those authors proposed a “selection of less 

extreme, and therefore less noisy, but hopefully more robust indicators”. 
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Klein Tank and Können (2003) showed that assessing trends in very rare weather events is 

difficult because the detection probability decreases the rarer the event. Consequently, many 

studies focus on indices for rather ‘"moderate" extremes as suggested by Frich et al. (2002). 

Numerous extreme precipitation indices are described and analyzed in recent literature (e.g., 

Peterson et al., 2001; Frich et al., 2002; Kiktev et al., 2003; Klein Tank and Können, 2003; 

Haylock and Goodess, 2004; Kostopoulou and Jones, 2005; Moberg and Jones, 2005). There 

are three main categories of extreme climate indicators: percentile-, threshold- or duration-

based indices. The first category of indices is based upon statistical quantities such as 

percentiles, so the tails of the statistical distribution are examined and days exceeding (not 

exceeding) a given high (low) percentile are counted. Klein Tank and Können (2003) argue 

that the effect on the indices of using either empirical methods for percentile calculations or 

parametric methods relying on distributions is small. Indices based on percentile thresholds 

have a clear advantage for climate-change detection studies as they compare the changes in 

the same parts of the precipitation distributions and thus can be used in studies of wide 

regions containing a broad range of climates (Haylock and Nicholls, 2000; Brunetti et al., 

2001; Griffiths et al., 2003; Klein Tank and Können, 2003). 

The indices of the second category are based on counts of days crossing a specified fixed 

value (e.g. the number of days per year with daily precipitation exceeding 20 mm). Indices 

based on absolute thresholds are beneficial for impact studies as they can be related with 

extreme events that affect human society and the natural environment (Klein Tank and 

Können, 2003). Duration-based indices (e.g. the highest consecutive 5-day precipitation total) 

allow the characterization of the magnitude of wet/dry spells or heat/cold waves. 

The literature review on precipitation extremes will mainly focus works analysing the time 

and space-time patterns of extreme precipitation indices. First, the relationship between 

precipitation and physiographic features is discussed (Section 2.3.1), and a review on the 

interpolation techniques used to map climate data is presented in Section 2.3.2. The 

evaluation of estimation accuracy is discussed in Section 2.3.2.1. Section 2.3.2.2, not only 

summarizes the strengths and weaknesses of major spatial interpolation techniques, but also 

presents a literature survey on mapping of precipitation fields. Finally, a review on extreme 

precipitation indices is presented in Section 2.3.3. 
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2.3.1 Relationship between precipitation and physiographic features 

It is long recognized that topography and other geographical factors are responsible for 

considerable spatial heterogeneity of the precipitation distribution at the sub-regional scale 

(e.g., Martínez-Cob, 1996; Faulkner and Prudhomme, 1998; Prudhomme and Reed, 1998; 

Brunsdon et al., 2001; Daly, 2006). A comprehensive review on the complex relationship 

between precipitation, airflow and physiographic features of mountainous regions is presented 

by Johansson and Chen (2003), and Smith and Barstad (2004). Several authors (e.g., 

Prudhomme and Reed, 1998; Drogue et al., 2002) verified that, in general, no more than four 

morpho-topographic parameters are necessary to reach a good explanation of the spatial 

variability of rainfall fields in complex mountainous terrain. In fact, according to Daly (2006), 

the main physiographic features affecting spatial patterns of climate are terrain (i.e., 

orography) and water bodies. This author also points out slope and aspect, riparian zones, and 

land use/land cover as spatial climate-forcing factors that are also important at scales of less 

than 1 km, but that are traditionally not accounted for in climate spatial interpolation. 

The relationship between elevation and precipitation is complex and highly variable in space, 

but in general, precipitation increases with elevation, mainly because of the orographic effect 

of mountainous terrain (e.g., Prudhomme and Reed, 1998; Goovaerts, 2000; Johansson and 

Chen, 2003). On the windward side, forced lifting of approaching air masses causes the 

release of rainfall and an increase in precipitation with elevation. Depending on the mountain 

size and the efficiency of the release processes, precipitation will decrease on the leeward 

side, hence the leeward slopes are drier and warmer (Föhn effect) than windward slopes. 

Moreover, it has also been noticed in several studies that the correlation between elevation 

and precipitation is stronger for averaged elevation over a larger area (usually a window with 

square shape) surrounding the observation point, than the effective elevation (e.g., 

Prudhomme and Reed, 1998; Diodato, 2005; Kyriakidis et al., 2001). On the other hand, the 

correlation between elevation and precipitation decreases with increasing time resolution, thus 

it is less useful for estimation purposes (Faulkner and Prudhomme, 1998; Lloyd, 2005; 

Haberlandt, 2007). 

Interpolation of climate data making use of physiographic information has been a subject of 

much research in hydrologic and climatic studies. Areas of great topographic complexity and 

regions with contrasting atmospheric or oceanic influences present more problems than flatter 

areas or regions with constant atmospheric patterns (Vicente-Serrano et al., 2003). 
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Interpolation methods performance depends strongly on the region, the variable under study, 

the data's spatial configuration and density, etc. Consequently, the superiority of a particular 

interpolation method is difficult to establish, since an interpolation method may be the 'best' 

for some specific situation and not for others (Isaaks and Srivastava, 1989; Martínez-Cob, 

1996). 

For example, Lloyd (2005) mapped monthly precipitation for 1999, in Great Britain, using 

five interpolation schemes and concluded that kriging using elevation as external drift 

provided the most accurate estimates from March to December, whereas for January and 

February ordinary kriging performed better. Note that when elevation was used as a 

secondary variable the accuracy of estimating precipitation was increased for most months, 

but the increase of complexity introduced in the estimation method did not payoff in all 

situations. 

Accordingly, it is commonly accepted that interpolation techniques that make use of the 

relationship between existing station data and explanatory physiographic variables (e.g., 

elevation or distance to the coastline) have the potential to better represent the actual climatic 

patterns, especially in mountainous areas and in regions with complex atmospheric influences 

(Prudhomme and Reed, 1998; Daly, 2006). In areas of complex terrain, univariate techniques 

do not display the spatial richness of climate at local scales and do have higher prediction 

errors than methods using external physiographic variables (e.g., Prudhomme and Reed, 

1999; Goovaerts, 2000; Kyriakidis et al., 2001; Vicente-Serrano et al., 2003). On the other 

hand, the work of Haberlandt (2007) shows that the information content of elevation for 

interpolation of sub-daily precipitation plays only a minor role, although interpolation 

methods using secondary information, such as radar observations or daily precipitation of a 

denser network, produced the best results. 

2.3.2 Overview of interpolation techniques 

A number of methods have been proposed for spatial interpolation of precipitation data. The 

simplest approach assigns to the unsampled location the nearest sampled value (Thiessen, 

1911). This method amounts at drawing around each sampled location a polygon of influence 

with the boundaries at a distance halfway between sampled pairs. 
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Inverse distance weighting (IDW) is another simple method that assigns weights in an 

averaging function based on the inverse of the distance (raised to some power) to every data 

points located within a given search radius centred on the point of estimate. The underlying 

principle is that climatic values are more alike between the nearest points than between distant 

points. In the most applied form, the averaging function is based on the inverse of the distance 

raised to a power of two, thus this technique is named inverse square distance. 

Geostatistical estimators, known as kriging – named after its first practitioner (Krige, 1951), 

are a family of generalized least-squares regression algorithms that provide statistically 

unbiased estimates of surface values from a set of observations at recorded locations, using 

the estimated spatial and temporal covariance model of the observed data. When developing 

the kriging equations the model of spatial covariances, or variogram (inverse function of the 

spatial covariances), is assumed known. This is a key function of geostatistics and 

characterizes the variability of the spatial (and temporal) patterns of physical phenomena. 

Typically, a mathematical variogram model is selected from a small set of authorised ones 

(e.g. exponential or spherical) and is fitted to experimental semivariogram values calculated 

from data for given angular and distance classes. The way in which the variogram models are 

chosen and their parameters are estimated – using automatic or manual fitting procedures that 

make use of expert knowledge – is controversial (Goovaerts, 1997, pp. 97-107). 

Examples of univariate geostatistical techniques commonly used are simple kriging (SK) and 

ordinary kriging (OK). Simple kriging assumes a known stationary mean, i.e. the mean of the 

property of interest is assumed constant across the study region. In ordinary kriging, the 

unknown mean is estimated as part of the kriging procedure using samples in the local 

neighbourhood of the point being estimated. OK is usually preferred to SK because it requires 

neither knowledge nor stationarity of the mean over the entire study region. 

As discussed in the previous section, information on distance alone can be insufficient to 

produce accurate spatial estimates in topographically complex regions. A major advantage of 

geostatistical prediction is that sparsely sampled observations of the primary variable can be 

complemented by secondary attributes that are more densely sampled (e.g., Goovaerts 1999, 

2000). 

Simple kriging with varying local means (SKlm) is a multivariate geostatistical technique that 

replaces the known stationary mean in the simple kriging estimate by known varying means 
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derived from secondary information. Depending on the secondary information available (e.g. 

categorical or continuous data), different estimates of the primary local mean can be used. If 

the secondary information relates to a continuous attribute, the primary local mean is usually 

estimated by linear regression. Then, the regression residuals are interpolated by simple 

kriging and are added to the trend estimate (i.e., the regression-derived estimate), thus this 

approach is sometimes called detrended kriging (Kyriakidis et al., 2001). 

Unlike the simple kriging procedures, in kriging with an external drift (KED) the primary 

local mean is not estimated through a calibration or regression process prior to the kriging of 

the primary attribute, but rather derived as part of the kriging procedure using exhaustive 

secondary information. In SKlm, the trend coefficients are derived once and independently of 

the kriging system, whereas in the KED approach the regression coefficients of the trend 

component (called drift) are implicitly estimated through the kriging system within each 

neighbourhood (Goovaerts, 1997, p. 198). 

A popular multivariate geostatistical technique is ordinary cokriging (CoK), or simply 

cokriging, which explicitly accounts for the spatial cross-correlation between primary and 

secondary attributes. The cokriging estimate is a linear combination of neighbouring primary 

and secondary data. Unlike CoK, in collocated (ordinary) cokriging (CCoK), the cokriging 

system only retains the secondary datum collocated with the location being estimated, but the 

secondary attribute must be known at all locations being estimated. Although cokriging is 

very effective when the secondary data are highly correlated with the prediction variable, 

Goovaerts (1997, pp. 235-240) discusses the advantages of collocated cokriging over 

cokriging when the secondary data are much more densely sampled than the primary attribute. 

Note that in the SKlm and KED approaches the secondary datum provides information only 

about the primary trend at the location being estimated, whereas cokriging approaches 

incorporate the secondary datum directly into the computation of the estimate and account for 

spatial cross-correlation between primary and secondary variables. Interested readers should 

refer to geostatistical textbooks (e.g., Isaaks and Srivastava, 1989; Goovaerts, 1997) for 

detailed descriptions of univariate and multivariate geostatistical interpolation methods. There 

are numerous successful applications of kriging interpolation described in the literature. 

Goovaerts (1999, 2000), Nicolau (2002) and Nicolau et al. (2002) compared the application 
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of some of these techniques to precipitation fields in Portugal (see Table 2.6 of the 2.3.2.2 

Summary section for details and other examples of applications). 

Another set of methods, allowing incorporating physiographic factors, combines distance 

weighting interpolation techniques (usually IDW or OK) with regression. A linear regression 

is fitted between the primary variable and the secondary variable(s), and the residuals are 

calculated at stations' locations. Under the assumption that predicted and residual values of 

the regression are uncorrelated, an interpolation method is then applied to the residuals. If the 

secondary variable(s) is known everywhere in the studied region, the regression prediction 

can be directly calculated everywhere. The final map of the primary variable is then obtained 

by combining the (regression) map of predicted values with the (IDW or OK) map of the 

residuals. This procedure incorporates the local variations through the spatial interpolation of 

regression residuals. Ninyerola et al. (2007) compared different forms of this approach using 

annually and monthly averaged rainfall for the whole Iberian Peninsula (see Table 2.6 of the 

2.3.2.2 Summary section for details and other examples of applications). 

Other methods fit mathematical spline functions to stations' data points. Smoothing or tension 

parameters can be introduced into the models, giving more or less smoothed maps. These 

techniques can also take into account physiographic factors. Spline algorithms are 

mathematically quite complex but are standard in current GIS software (Vicente-Serrano et 

al., 2003). The software package ANUSPLIN (Hutchinson, 1995) fits thin-plate splines 

(usually second- or third-order polynomials) through station records in three dimensions: 

latitude, longitude, and elevation. Recent applications using ANUSPLIN include Price et al. 

(2000), Boer et al. (2001) and Hijmans et al. (2005). See Table 2.6 of the 2.3.2.2 Summary 

section for details and other examples of the splines approach. 

Local regression models are based on multiple regressions, or polynomials, conducted within 

a moving window or search radii centred on the point of estimate (e.g. Brunsdon et al., 2001). 

While multiple regression models include physiographic variables, polynomials usually just 

include the nearest neighbours' data of the point being estimated. Thornton et al. (1997) 

proposed a local regression model, named DAYMET, which develops local linear regressions 

between climate and elevation for each grid cell on a digital elevation model (DEM), using 

data from surrounding stations. The method is based on the spatial convolution of a truncated 

Gaussian-weighting filter with the set of station locations. More recently, Hasenauer et al. 
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(2003) developed a DAYMET point version that interpolates daily weather for any location, 

as it is needed to link existing field observations with missing weather data. This adaptation of 

DAYMET allows producing weather data (daily minimum and maximum temperature, 

precipitation, solar radiation, and vapour pressure) for any day and location within Austria 

starting in 1960. 

The Precipitation-elevation Regression on Independent Slopes Model (PRISM) is based on 

local climate-elevation regression functions (Daly et al., 1994). In PRISM, each DEM cell is 

assigned to a topographic facet by assessing slope orientation. Precipitation is estimated by 

regression of precipitation and elevation for nearby stations within a DEM grid cell’s 

topographic facet. More recently, PRISM uses weighting functions to incorporate gauge data 

of neighbouring topographic facets for regressions, which involves a sophisticated 

parameterization (Daly et al., 2002). Station weights are calculated on the basis of an 

extensive spatial climate knowledge base accounting for spatial variations in climate caused 

by elevation, terrain orientation, effectiveness of terrain as a barrier to flow, coastal proximity, 

moisture availability, a two-layer atmosphere, and topographic position (Daly, 2006). 

Guan et al. (2005) describe a specific model called Atmospheric Effects Detrended Kriging 

(ASOADeK) which combines local regressions with ordinary kriging of the correspondent 

residuals to map long-term monthly averaged precipitation in a mountainous region of New 

Mexico (USA). ASOADeK uses a multivariate linear regression approach conditioned on 

gauge data to autosearch regional and local climatic settings (i.e., infer the spatial gradient in 

atmospheric moisture distribution and the effective moisture flux direction) and local 

orographic effects (the effective terrain elevation and aspect). The observed gauge 

precipitation data are then spatially detrended by the autosearched regression surface. The 

spatially detrended gauge data are further interpolated by ordinary kriging to generate a 

residual precipitation surface. The precipitation map is then constructed by adding the 

regression surface to the kriged residual surface. Guan et al. (2005) show that this 

methodology gives better estimates than precipitation kriging and precipitation-elevation 

cokriging, and also that ASOADeK produces maps comparable to the PRISM products for the 

case study considered. Hijmans et al. (2005) compare global climate databases developed 

using ANUSPLIN, PRISM and DAYMET, while Daly (2006) discusses the methodology 

used to develop those, and other, products. 
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Regional regression techniques develop a single, domain-wide, multivariate regression 

function between climate and physiographic variables. Local variations are dismissed as 

random, and the climatic map is created based on the general structure of the climate variable 

at all available points. This approach often explains a large proportion of the climate 

variability within small domains, or across topographically simple regions. See Table 2.6 of 

the 2.3.2.2 Summary section for details and other examples of regression approaches. 

The climatologically aided interpolation (CAI) is a hybrid approach also used to produce 

spatial climate data sets (Willmott and Robeson, 1995). This method uses an existing spatial 

climate data set to improve the interpolation of another data set. Daly (2006) discusses the 

most common forms of this approach. Examples of data sets developing using CAI include 

New et al. (2000) and Daly et al. (2004). 

Interpolation usually leads to a smoothing of the distribution inferred by the observations and 

thus to a loss of variance. For example, it is well known that kriging is locally accurate in the 

minimum error variance sense, but does not provide representations of spatial variability 

given the “smoothing” effect of kriging (Yamamoto, 2005). Interpolation typically leads to an 

overestimation of small values and underestimation of large ones. Moreover, the smoothing 

depends on the local data configuration, since it is minimal close to the data locations and 

increases as the location being estimated gets farther away from data locations. Such 

conditional bias is undesirable when trying to detect patterns of extreme attribute values 

(Goovaerts, 1997, p. 370). The smoothing effect in precipitation data is a serious shortcoming 

considering the modelling of floods or other extreme hydrological processes (Haberlandt, 

2007). To overcome this limitation, geostatistical stochastic simulation has become a widely 

accepted procedure to reproduce the spatial variability and uncertainty of highly variable 

phenomena in geosciences (e.g., Franco et al., 2006; Bourennane et al., 2007). Geostatistical 

simulation methods describe local data variability based on many, equally probable, 

realizations of the phenomenon, consistent with the data and its statistical characteristics. 

Sequential simulation is a widely used geostatistical tool for obtaining a set of equiprobable 

simulated realizations of variables from natural phenomena, conditional to observed data, 

honouring their spatial distribution and uncertainty. Sequential Gaussian simulation involves 

the generation of many independent realizations of a Gaussian (or in case of sequential 

indicator simulation, binary) random field (Deutsch and Journel, 1997; Goovaerts, 1997; 
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Emery, 2004). While these procedures require the transformation of original variables, direct 

sequential simulation (DSS) has been proposed (Journel, 1994) for simulating directly in the 

original data space and does not rely on multi-Gaussian assumptions. 

Journel (1994) showed that for the sequential simulation algorithm to reproduce a specific 

covariance model it suffices that simulated values are drawn from local distributions centred 

at the simple kriging estimates with a variance corresponding to the simple kriging estimation 

variance. This result guarantees that the spatial covariance, and the global sample mean and 

variance, of the original variable are reproduced but not the histogram. To overcome this 

limitation, Soares (2001) proposed a direct sequential simulation (DSS) algorithm that uses 

the local simple kriging estimates of the mean and variance, not to define the local cumulative 

distribution function (cdf) but to sample from the global cdf. Oz et al., (2003) compare this 

algorithm to a similar one, and briefly discuss other sequential simulation algorithms that 

have been proposed to guarantee histogram reproduction. More recently, Robertson et al. 

(2006) proposed two nonparametric approaches and compared them to the algorithm 

introduced by Oz et al., (2003). Robertson et al. (2006) concluded that, overall, there is very 

little difference between the three approaches, with the algorithms resulting in similar 

histogram and semivariogram reproduction. 

There are also a number of geostatistical simulation approaches for the joint simulation of 

interdependent attributes, such as sequential Gaussian cosimulation (Verly, 1993), stepwise 

conditional transformation for Gaussian simulation of multiple variables (Leuangthong and 

Deutsch, 2003), unconditional Gaussian cosimulation (Oliver, 2003), successive cokriging of 

indicators (Vargas-Guzmán and Dimitrakopoulos, 2003), among other forms of multivariate 

indicator simulation (e.g., Emery, 2004). Soares (2001) extended the DSS algorithm for the 

joint simulation of different variables, thus named direct sequential cosimulation (coDSS) 

algorithm. Instead of simulating all variables simultaneously, this approach simulates each 

variable in turn conditioned to the previous simulated variable. 

2.3.2.1 Accuracy evaluation and assessment of uncertainty 

The accuracy and uncertainty of gridded data sets is difficult to assess because the field that is 

being estimated is unknown between data points. Spatial interpolation errors are 

interdependent functions of the station-network distribution, the efficacy of the interpolation 

procedure, and the real (but unknown) spatial distribution of the underlying climatic field 



LI T E R A T U R E R E V I E W 

 96

(Willmott and Matsuura, 2006). Error estimates based on model assumptions are useful in a 

relative sense only, and cannot be compared to those of other models (Daly, 2006). 

Cross-validation is a widely used model evaluation method that allows comparing different 

interpolation techniques (e.g., Hevesi et al., 1992; Goovaerts, 2000; Kyriakidis et al., 2001), 

even though the comparison is valid only when all of the parameters of the interpolation – the 

domain, input data, grid resolution, etc. – are identical (Daly, 2006). In jackknife cross-

validation, also known as "leave-one-out" cross-validation, sample values are deleted from 

the dataset, one at the time, and then the interpolation method is applied to estimate the 

missing value using the remaining observed values9. Once the process is complete, the 

estimation errors are calculated as the differences between estimated and observed values. 

Ideally, the distribution of these errors is centred in zero. 

At each station's location, the bias of estimation can be calculated as the ratio of the 

estimation error to the observation multiplied by 100 (Prudhomme and Reed, 1999). Overall 

error statistics commonly computed include the mean bias error (ME) or the mean absolute 

error (MAE) that check if the estimation is biased, and the root mean square error (RMSE) 

which provides a measure of accuracy of the method. Haberlandt (2007) used the ratio of the 

variance of estimated values to the variance of observed values to assess the ability of the 

interpolation method to preserve the variance, because interpolation usually leads to a 

smoothing of the observations and thus to a loss of variance. 

Willmott and Matsuura (2006) describe an approach to spatial cross-validation, and examine 

three average-error statistics with respect to their abilities to evaluate spatial interpolators: the 

root-mean-square error (RMSE), the mean absolute error (MAE), and the mean bias error 

(ME). Their analysis indicates that the RMSE is an inappropriate measure of average error 

because it is a function of three characteristics of a set of errors, rather than of one (the 

average error). Moreover, Willmott and Matsuura (2006) concluded that MAE and ME are the 

most natural measures of spatial-average interpolation error, and that (unlike RMSE) they are 

unambiguous measures of spatial-average error. 

                                                 

9 The common kriging cross-validation procedure recalculates the kriging weights for each cross-
validated point using the same variogram model, which is previously defined using all of the data 
points. 
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A disadvantage of cross-validation is that it is susceptible to clustering. If observations appear 

in clusters, removing a single observation has little effect on prediction performance at the 

location of the removed observation since nearby observations provide most of the 

information for prediction. The clustering disadvantage of cross-validation can be overcome, 

whenever the monitoring stations network is dense enough, by removing samples procedures 

(Martínez-Cob, 1996). In these approaches, a set of validation observations are (randomly or 

subjectively) select to be excluded from the interpolation process, which is then used to 

estimate the missing values based on the remaining observations (e.g., Boer et al., 2001; 

Drogue et al., 2002; Vicente-Serrano et al., 2003). Like in cross-validation, the estimation 

errors are calculated as the differences between estimated and observed values. The obvious 

disadvantage of both approaches is that estimation error statistics are limited to locations for 

which stations exist. 

As stated before, geostatistical simulation methods generate a set of alternative realizations of 

the spatial distribution of an attribute. The series of simulated maps can be post-processed and 

the spatial uncertainty summarized using probability maps, quantile maps, and maps of spread 

(Goovaerts, 1997, pp. 431-436). Hence, the uncertainty at an unsampled location can be 

evaluated through spread measures, such as the variance or the interquartile range, derived 

from the corresponding local histogram. 

2.3.2.2 Summary 

This section summarizes the previous ones by presenting an overview of strengths and 

weaknesses of major interpolation techniques used to map climate data (Table 2.4), and by 

summarizing (Table 2.5) and describing (Table 2.6) a number of applications on mapping of 

precipitation fields. 

A literature review on the spatial interpolation of precipitation for Portugal is provided by 

Nicolau (2002). In her Ph.D. thesis, Nicolau (2002) evaluated the performance of several 

univariate and multivariate methods for mapping the spatial variability of averaged (annual 

and monthly) precipitation in Portugal. The maximum annual precipitation for 100 and 2 

years return periods were also interpolated. Nicolau (2002) verified that kriging using 

elevation as external drift, performed over a moving window, provided the closer predictions 

for all the precipitation fields. Further information on this work is provided in Table 2.6. 
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Table 2.4 – Summary of strengths and weaknesses of major interpolation techniques used to map climate data. If an entry is a specific model, the general 
interpolation approach it employs is given in parenthesis after the name (extended and adapted from Daly, 2006) 

Group of 
interpolation 

techniques 
Description Strengths Weaknesses 

Simple 
methods 

Methods that assign to the 
unsampled location the 
nearest sampled value. 

 Readily available 
 Very easy to apply 

 Very simple, providing poor estimates 
 Abrupt spatial discontinuities arise in the values 

when passing from one polygon to another 
 Tessellation pattern depends on distribution of data 
 Spatial dependence between observations is not 

accounted for 
 Does not account for secondary information 
 No errors assessment, only one data point per 

polygon 

Inverse 
distance 
weighting 
(IDW) 

Methods that assign weights 
in averaging function based 
on the inverse of the distance 
(raised to some power) to 
every data points located 
within a given search radius 
centred on the point of 
estimate. 

 Readily available 
 Very easy to apply 
 Quick interpolation from sparse data 

 Very simple, thus only adequate for a small region 
with a simple topography and a very dense monitoring 
stations network 
 Accounts for distance relationships only 

Univariate 
kriging 

Geostatistical methods that 
provide statistically unbiased 
estimates of surface values 
using an estimated spatial and 
temporal covariance model of 
the observed data. Weights in 
the kriging equations are 
determined such as to 
minimize the estimation 
variance. 

 Readily available 
 Relatively easy to apply 
 Accounts for spatial and temporal continuity changes 

as a function of the distance and direction between any 
pair of points in space and time 
 Binary and nominal data can be easily interpolated 

(e.g. with indicator kriging) 

 Requires domain-wide semivariogram, which limits 
size and heterogeneity of domain 
 Does not account for secondary information 
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Group of 
interpolation 

techniques 
Description Strengths Weaknesses 

Multivariate 
kriging 

Geostatistical methods 
making use of secondary 
attributes that are more 
densely sampled than the 
primary variable. 

 Accounts for spatial and temporal continuity changes 
as a function of the distance and direction between any 
pair of points in space and time 
 May account for effects of multiple variables (usually 

just elevation) on climate patterns 
- SKlm provides an easy way to incorporate several 

secondary variables 
- SKlm and KED introduce the residual spatial 

correlation to the mapping of the primary variable 
- CoK accounts for changes in cross-correlation across 

the study area 
- CoK is most effective when the covariate is highly 

correlated with the prediction variable 

 Not readily available 
 Requires domain-wide semivariogram, which limits 

size and heterogeneity of domain 
 Generally, variogram models have to fit the “linear 

model of co-regionalization” 
- In KED, the relationship between primary trend and 

secondary variable must be linear. If not, an 
appropriate transformation of the secondary variable 
is needed (Goovaerts, 1999) 

Combination of 
distance 
weighting 
methods and 
regression 

This is a two-stage process 
where a regression model is 
fitted to the primary data 
using the secondary 
information, followed by the 
interpolation of the 
corresponding residuals (e.g., 
using OK or IDW). Then, the 
regression map and the 
residual surface are added 
together to get the final 
gridded map. 

 Readily available 
 Relatively easy to apply 
 Accounts for effects of multiple variables (usually 

latitude, longitude, and elevation) without requiring a 
co-regionalization model 
 Regression map accounts for global pattern and 

residuals surface accounts for local variations (Perry 
and Hollis, 2005) 

 Spatial dependence between observations is not 
accounted for in the regression map 
 Violation of theoretical assumptions (e.g., building a 

variogram on residuals from an OLS fitting procedure, 
i.e. assuming that the residual values are spatially 
uncorrelated) 

Splines 

Methods that fit a 
mathematical spline function 
to the data points, and can be 
used for exact interpolation 
or for "smoothing". 

 Readily available 
 Relatively easy to apply 
 Quick interpolation 
 Performs better when dense, regularly-spaced data 

are available 

 Difficulty handling sharp spatial gradients in 
relationship because of smoothing 
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Group of 
interpolation 

techniques 
Description Strengths Weaknesses 

Local 
regression 
models 

 Local interpolators break 
the full sample area into 
smaller pieces that are each 
evaluated individually by a 
particular function. The 
method is usually based on 
local regressions of climate 
versus physiographic 
variables and/or nearest 
neighbours. 

 May account for effects of multiple variables (usually 
just elevation) on climate patterns 
 Local regression accounts for spatially varying 

elevation relationships 

 Not readily available 
 Results depend on the fit of the regression model and 

the quality and detail of the input data surfaces 

Regional 
regression 

Regional models use a single 
interpolation function that is 
mapped across the entire area 
of concern. Usually, a 
domain-wide multivariate 
regression between climatic 
and physiographic variables 
is developed. 

 Readily available 
 Relatively easy to apply 
 Accounts for effects of multiple variables (usually 

latitude, longitude, and elevation) on climate patterns 
 Stable statistical relationship 

 A single, domain-wide relationship limits size and 
heterogeneity of modelling domain 
 Results depend strongly on the fit of the regression 

model and the quality and detail of the input data 
surfaces 
 Spatial dependence between observations is not 

accounted for 
 May not reproduce station values 

ANUSPLIN 
(thin plate 
splines: 
Hutchinson, 
1995) 

Specific model that fits 
smoothing splines to the 
station data in three 
dimensions: latitude, 
longitude, and elevation. 

 Readily available 
 Relatively easy to apply 
 Accounts for spatially varying elevation relationships 

 Simulates elevation relationship only 
 Difficulty handling sharp spatial gradients in 

relationship 

DAYMET 
(local 
regression: 
Thornton et al., 
1997) 

Specific model that fits local 
linear regressions of climate 
versus elevation. 

 Local regression accounts for spatially varying 
elevation relationships 

 Not readily available 
 Simulates elevation relationship only 
 Cannot handle nonlinear and nonmonotonic elevation 

relationships 
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Group of 
interpolation 

techniques 
Description Strengths Weaknesses 

PLUVIA 
(combination of 
distance 
weighting and 
regression: 
Drogue et al., 
2002) 

Specific model that 
determines the best regional 
linear regression of annual 
and monthly rainfall amounts 
versus several morpho-
topographic predictors. The 
interpolated residual fields 
are produced by inverse 
square distance. 

 Accounts for spatially varying elevation relationships 
as a function of the distance and direction 
 Also accounts for large- and local-scale topographic 

effects on the spatial distribution of rainfall 

 Not readily available 
 Seems to be less accurate for months with high 

spatial variability 
 Spatial analysis can be a little redundant because of 

the nested windows (but the interdependence and 
collinearity of parameters observed for small windows 
decrease when the inter-windows gap increases) 

PRISM (local 
regression: 
Daly et al., 
1994, 2002) 

Specific model that fits local 
linear regressions of climate 
versus elevation, with slopes 
that vary with elevation. In 
the current version, station 
weights are calculated based 
on an extensive spatial 
climate knowledge base. 

 Local regression accounts for spatially varying 
elevation relationships 
 Also accounts for effectiveness of terrain as barriers, 

terrain-induced climate transitions, cold air drainage 
and inversions, and coastal effects 

 Not readily available 
 Requires significant effort to take advantage of full 

capability 

Geostatistical 
conditional 
simulation 

 Describe local data 
variability based on many, 
equally probable, realizations 
of the phenomenon, 
consistent with the data and 
its statistical characteristics. 

 Accounts for spatial and temporal continuity changes 
as a function of the distance and direction between any 
pair of points in space and time 
 May account for effects of multiple variables (usually 

just elevation) on climate patterns 
 Reproduces the variance of the sampled data 
 Provides an estimate of the range of possible values 

of an attribute at unsampled locations 
 Spatial uncertainty can be summarized using 

probability maps, quantile maps, and maps of spread 
 Allows producing measures of uncertainty, at all grid 

points, that do not depend on data distribution but 
rather on local values 
- DSS simulates directly in the original data space and 

does not rely on multi-Gaussian assumptions 

 Not readily available 
 Computationally intensive and complex 
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Table 2.5 – Summary of applications on general interpolation techniques used to map precipitation fields (if an entry is a specific model, it is referred 
under the general interpolation approach it employs) 

Reference / example data set URL 

Th
ie

ss
en

 P
ol

yg
on

s 

In
ve

rs
e 

di
st

an
ce

 
w

ei
gh

tin
g 

(ID
W

) 

O
rd

in
ar

y 
kr

ig
in

g 
(O

K
) 

Si
m

pl
e 

kr
ig

in
g 

w
ith

 
va

ry
in

g 
lo

ca
l m

ea
ns

 
(S

K
lm

) 

K
rig

in
g 

w
ith

 e
xt

er
na

l 
dr

ift
 (K

ED
) 

C
ok

rig
in

g 
(C

oK
) 

O
th

er
 fo

rm
s 

of
 k

rig
in

g 

C
om

bi
na

tio
n 

of
 

di
st

an
ce

 w
ei

gh
tin

g 
m

et
ho

ds
 a

nd
 re

gr
es

si
on

 

Sp
lin

es
 

Lo
ca

l r
eg

re
ss

io
n 

R
eg

io
na

l r
eg

re
ss

io
n 

G
eo

st
at

is
tic

al
 

co
nd

iti
on

al
 s

im
ul

at
io

n 

Boer et al. (2001)   X   X  X ANUSPLIN    
Carrera-Hernández and Gaskin (2007)   X  X  X      
Daly et al. (1994)   X   X  X  PRISM   
Daly et al. (2002)          PRISM   
Diodato (2005)   X   X       
Drogue et al. (2002)     X X  PLUVIA     
Faulkner and Prudhomme (1998)        X     
Goovaerts (1999)    X X X     X  
Goovaerts (2000) X X X X X X     X  
Guan et al. (2005)   X   X  ASOADeK     
Haberlandt (2007) X X X  X  X      
Hasenauer et al. (2003)          DAYMET   
Hevesi et al. (1992)  X X   X     X  
Hijmans et al. (2005)         ANUSPLIN    
Hundecha and Bárdossy (2005)     X        
Kyriakidis et al. (2001)   X X X        
Lloyd (2005)  X X X X     X   
Marquínez et al. (2003)           X  
Martínez-Cob (1996)   X   X  X     
Nicolau (2002) X X X  X X   X X   
Nicolau et al. (2002)   X  X     X   
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Reference / example data set URL 
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Ninyerola et al. (2007)  X      X X    
Perry and Hollis (2005)        X     
Price et al. (2000)  X       ANUSPLIN    
Prudhomme and Reed (1998)           X  
Prudhomme and Reed (1999)   X     X     
Thornton et al. (1997)          DAYMET   
Vicente-Serrano et al. (2003) X X X   X X X X  X  
Weisse and Bois (2001)   X     X     
Xia et al. (1999)  X         X  
Web site developed to help distribute global climate data sets, documentation and 
related publications produced by Willmott, Matsuura and collaborators at the 
Center for Climatic Research, University of Delaware. 
http://climate.geog.udel.edu/~climate/ (retrieved 11 March 2008) 

 CAI CAI         

 

The DAYMET U.S. Data Center provides a source for daily surface weather data 
and climatological summaries for the USA. 
http://www.daymet.org (retrieved 11 March 2008) 

         DAYMET  
 

The Digital Climatic Atlas of the Iberian Peninsula provides a set of digital climatic 
maps of mean air temperature (minimum, mean and maximum), precipitation and 
solar radiation with spatial resolution of 200 m and monthly and annual temporal 
resolution. 
http://www.opengis.uab.es/wms/iberia/en_index.htm (retrieved 11 March 2008) 

       X    

 

Met Office gridded climate data sets for the UK (28 weather parameters). 
http://www.metoffice.gov.uk/research/hadleycentre/obsdata/ukcip/index.html 
(retrieved 12 February 2008) 

       X    
 

The PRISM Group produces and distributes gridded climate data sets of the USA.
http://www.prism.oregonstate.edu/ (retrieved 11 March 2008)          PRISM   

WorldClim is a set of global climate grids with a spatial resolution of a square 
kilometre. 
http://www.worldclim.org (retrieved 6 March 2008) 

        ANUSPLIN   
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Table 2.6 – Literature survey on mapping of precipitation fields, and best model found whenever comparisons are available 

Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Boer et al. (2001) 

 Study domain 
- Jalisco State, Mexico 
 Grid cells resolution 

- Not specified 
 Primary data 

- Monthly mean precipitation (at least 19 years of 
records within 1940/90) 

 Secondary information 
- Elevation 

 ANUSPLIN 
- bivariate  thin plate spline 
- partial thin plate spline 
- trivariate thin plate spline 
 OK 
 CoK 
 Regression-kriging 
 Trivariate regression-kriging 

 Overall error statistics computed after 
removing samples procedure (5 validation 
sets of stations selected by the authors): MSE 
(mean square error) and MPE (maximal 
prediction error). 
 Best models: trivariate thin plate splines 

and trivariate regression-kriging 

Carrera-Hernández 
and Gaskin (2007) 

 Study domain 
- Basin of Mexico 
 Grid cells resolution 

- 200 m 
 Primary data 

- Daily precipitation (June 1978 and June 1985) 
 Secondary information 

- Elevation 

 Ordinary kriging in a global 
neighbourhood (OK) 
 Ordinary kriging in a local 

neighbourhood (OKl) 
 Block kriging with external 

drift (BKED) 
 Kriging with external drift in 

a global neighbourhood (KED) 
 Kriging with external drift in 

a local neighbourhood (KEDl). 

 RMSE (root mean square error) computed 
after jackknife cross-validation  
 The monthly-accumulated maps derived 

from daily interpolations were sampled at the 
location of each climatological station and the 
absolute difference between them and the 
accumulated point values was computed to 
obtain the estimation errors. Overall error 
statistics computed: correlation, mean, 
standard deviation, minimum and maximum. 
 Best model: KEDl 

Daly et al. (1994) 

 Study domain 
- Western United States 
 Grid cells resolution 

- Approx. 6 km x 9 km 
 Primary data 

- Monthly and annual precipitation 
 Secondary information 

- Elevation 

 PRISM (local regressions) 
 OK 
 CoK 
 Combination of distance 

weighting methods (OK?) and 
regional regression 

 Overall error statistics computed after 
jackknife cross-validation of (log of) 
averaged annual precipitation for the period 
1982/88 in Willamette River basin: ME 
(mean error) and MAE (mean absolute error) 
 Best model: PRISM 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Diodato (2005) 

 Study domain 
- Benavento province, Italy 
 Grid cells resolution 

- 500 m 
 Primary data 

- Logarithm transformation of averaged annual and 
seasonal precipitation (computed from monthly records 
within 1955/99) 

 Secondary information 
- Elevation derived from 3x3 km DEM 
- Topographic index (vegetation cover factor multiplied 

by the square root of elevation) 

 OK 
 CoK 

 Overall error statistics computed after 
jackknife cross-validation: ME (mean error), 
RMSE (root mean square error), ASE 
(average kriging standard error), mean 
standard error, RMSSE (root-mean-square 
standardized error). In addition, hypotheses 
test to compare changes in RMSE and ASE. 
 Best model: CoK with topographic index 

Drogue et al. (2002) 

 Study domain 
- Eastern part of the Rhine-Meuse basin, France and 

Switzerland 
 Grid cells resolution 

- 1 km 
 Primary data 

- Annual and monthly rainfall (the data were decimal 
log-transformed; different periods of analysis within 
1971/90) 

 Secondary information 
- Log-transformation of several morpho-topographic 

directional predictors calculated on a 1x1 km DEM 
- Stations' elevation 
- Stations' geographical coordinates 

 PLUVIA (specific model 
combining IDW of power 2 
and a different regional 
regression model for each 
analysis period) 
 Kriging using elevation as 

external drift (KED) 
 Ordinary Cokriging with 

elevation (CoK) 

 Overall error statistics computed after 
removing samples procedure (10 validation 
sets of stations, selected by the authors): 
MAE (mean absolute error expressed as a 
percentage), ME (mean error) and standard 
deviation of estimation errors.  
 Best model: CoK 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Faulkner and 
Prudhomme (1998) 

 Study domain 
- United Kingdom 
 Grid cells resolution 

- 1 km 
 Primary data 

- RMED: median of the annual maximum rainfall, 
computed using different rainfall durations (1 hour to 8 
days) 

 Secondary information 
- Topographic variables considered by Prudhomme and 

Reed (1998), plus new averaged variables 

 Combination of distance 
weighting methods (OK) and 
regional regression 

 Best model for long-duration RMED (1 to 8 
days): 3-parameter regression model 
 Best model for short-duration RMED (1 to 

12 hours): 6-parameter regression model 

Goovaerts (1999) 

 Study domain 
- Algarve region, Portugal 
 Grid cells resolution 

- 1 km 
 Primary data 

- Monthly and annual erosive storm empirical index 
(computed using monthly rainfall, monthly rainfall for 
days where precipitation exceeds 10 mm, and monthly 
number of days where precipitation exceeds 10 mm; 
January 1970-March 1995) 

 Secondary information 
- Elevation 

 SKlm 
 KED 
 CCoK 
 Regional regression 

 Overall error statistics computed after 
jackknife cross-validation: MAE (mean 
absolute error) 
 Best model: CCoK 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Goovaerts (2000) 

 Study domain 
- Algarve region, Portugal 
 Grid cells resolution 

- 1 km 
 Primary data 

- Annual and monthly rainfall averaged over the period 
January 1970-March 1995 

 Secondary information 
- Elevation 

 Thiessen polygons 
 Inverse square distance 
 OK 
 SKlm 
 KED 
 CCoK 
 Regional regression 

 Overall error statistics computed after 
jackknife cross-validation: MSE (mean 
square error) 
 Best model: SKlm yield slightly better 

results than KED and CCoK 

Haberlandt (2007) 

 Study domain 
- 25000 km2 in southeast  Germany 
 Grid cells resolution 

- 1 km 
 Primary data 

- Hourly rainfall (storm period of the 10th to the 13th of 
August 2002) 

 Secondary information 
- Radar observations 
- Daily precipitation of a denser network 
- Elevation 

 Thiessen polygons 
 Inverse square distance 
 OK 
 Ordinary indicator kriging 

(IK) 
 KED 
 Indicator kriging with 

external drift (IKED) 

 Overall error statistics computed after 
jackknife cross-validation: ME (mean error), 
RMSE (root mean square error normalized 
with the observed average), CORR 
(coefficient of correlation), ratio of the 
variance of estimated values to the variance 
of observed values 
 Best model: all additional information used 

simultaneously with KED 

Hevesi et al. (1992) 

 Study domain 
- Yucca Mountain, Nevada, USA 
 Grid cells resolution 

- Not specified 
 Primary data 

- Natural logarithm transformation of averaged annual 
precipitation, multiplied by 1000 (8-53 years records 
length) 

 Secondary information 
- Elevation 

 OK 
 CoK 
 Neighbourhood averaging 
 3 different inverse distance 

methods 
 2 regression equations 

 Overall error statistics computed after 
jackknife cross-validation: PAEE (percent 
average estimation error), RMSE (relative 
mean square error), SMSE (standardized 
mean square error). Calculated estimation 
variances were assumed consistent with 
observed RMSE if SMSE was within the 
interval [1 ± 2(2/n)]½. 
 Best model: CoK 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Kyriakidis et al. 
(2001) 

 Study domain 
- Northern California coastal region, USA 
 Grid cells resolution 

- 1 km 
 Primary data 

- Precipitation measurements representing the seasonal 
[November–December–January (NDJ)] average of 
daily rainfall for 1 November 1981–31 January 1982 

 Secondary information 
- 13×13 km2 window averaged elevation 
- Lower-atmosphere state variable related to specific 

humidity  
- Lower-atmosphere state variable related to vertical 

wind 
- Variables characterizing the interactions between those 

three features 

 OK 
 SKlm 
 KED 

 Overall error statistics computed after 
jackknife cross-validation: RMSE (root mean 
square error), correlation between cross-
validation estimates and true (sample) values, 
correlation between cross-validation errors 
and true (sample) values. In addition, 
traditional regression diagnosis analysis 
between predictors and cross-validation 
errors. 
 RMSE computed after removing samples 

procedure (15 stations with high precipitation 
values) 
 Best model: SKlm using as predictors: 

vertical wind, interaction between humidity 
and elevation, and interaction of humidity 
with elevation and vertical wind. 

Lloyd (2005) 

 Study domain 
- Great Britain 
 Grid cells resolution 

- 661.1 m 
 Primary data 

- Monthly rainfall for 1999 
 Secondary information 

- Elevation 

 Inverse square distance 
 OK 
 SKlm 
 KED 
 Local regression 

 Overall error statistics computed after 
jackknife cross-validation: ME (mean error), 
RMSE (root mean square error) 
 Best model: KED for all months from 

March to December, and OK for January and 
February 



LI T E R A T U R E R E V I E W 

 109

Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Marquínez et al. 
(2003) 

 Study domain 
- Autonomous Region of Asturias in northern Spain 
 Grid cells resolution 

- 200 m 
 Primary data 

- Annual precipitation averaged over 1966/90 
- Mean monthly precipitation for the dry season 

(June/September) averaged over 1966/90 
- Mean monthly precipitation for the wet season (rest of 

the year) averaged over 1966/90 
 Secondary information 

- Elevation 
- Euclidean distance from the coastline 
- Shortest distance to an arbitrary line further west than 

any point in the area 
- Elevation derived over sub-basins 
- Slope derived over sub-basins 

 Regional regression 

 Traditional regression diagnosis analysis 
and overall error statistics computed after 
removing samples procedure (33 stations, 
selected by the authors): ME (mean error), 
MAE (mean absolute error expressed as a 
percentage). 
 Best model: 5-parameter regression model 

Martínez-Cob 
(1996) 

 Study domain 
- Aragón, northeast Spain 
 Grid cells resolution 

- 5 km 
 Primary data 

- Base-ten logarithm transformation of long-term mean 
values of total annual precipitation (10-20 years records 
length for most weather stations, and up to 50 years for 
some of them) 

 Secondary information 
- Base-ten logarithm transformation of elevation 

 OK 
 CoK 
 Combination of distance 

weighting methods and 
regression 

 Overall error statistics computed after 
removing samples procedure (randomly 
selected stations): MAE (mean absolute 
error), MSE (mean squared error), EEV 
(estimation error variance). Calculated EEV 
were assumed consistent with true errors if 
SMSE (standardized mean square error) was 
within the interval [1 ± 2(2/n)]½ ) 
 Best model for the precipitation variable: 

CoK 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Nicolau (2002) 

 Study domain 
- Continental Portugal 
 Grid cells resolution 

- 100 m, 250 m, 500 m, 1000 m 
- 25 m, 50 m, 100 m, 250 m, 500 m, 1000 m for methods 

using elevation as only secondary data 
 Primary data 

- Annual and monthly precipitation averaged over 
1959/60 – 1990/91 (hydrological years) 

- Precipitation in dry and wet years averaged over 
1959/60 – 1990/91 (hydrological years) 

- Maximum annual precipitation for 100 and 2 years 
return periods (determined for stations with at least 30 
years of observations and measured until the 
hydrological year of 1994/95) 

 Secondary information 
125 variables related to: 
- Easting and northing 
- Elevation 
- Slope 
- Distance to the coastline 
- Dominant orientation of the hillsides 
- Counting of blockages to the advance of the air masses 
- Altimetry platforms reached since the coastline 
- Altimetry barriers in the neighbourhood of each cell 
(Different radii and directions were also considered) 

 Thiessen polygons 
 Delaunay triangulation 
 Polynomial interpolation 
 Thin plate splines 
 IDW (powers of 1, 2 and 3) 
 OK 
 Local regression 
 KED (using 1, 2 or 3 aux. 

variables) 
 CoK with elevation 

 Conclusions related to secondary 
information: 
- The maximum annual precipitation 

variables were not strongly correlated with 
the secondary variables. 

- The correlation between precipitation and 
elevation was significantly higher when it 
was evaluated in a local neighbourhood. 

- The overall conclusion, after a local 
correlation analysis, was that elevation was 
the most important variable to explain the 
phenomena when analyzed on restricted 
neighbourhoods. 

 Conclusions related to grid cells resolution: 
- The 1 km grid square resolution proved to 

be the best one for mapping the spatial 
variability of 14 of the 17 precipitation 
fields. 

 Overall error statistics computed after 
jackknife cross-validation: Pearson's 
correlation coefficient between estimated and 
real values, ME (mean error), MAE (mean 
absolute error), MAE expressed as a 
percentage, MSE (mean square error), and an 
overall error indicator that was proposed to 
summarize all of those previous ones. 
 Best model: KED with elevation using1 km 

grid square resolution. 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Nicolau et al. (2002) 

 Study domain 
- Continental Portugal 
 Grid cells resolution 

- 500 m 
 Primary data 

- Annual and monthly precipitation averaged over 
1959/60 – 1990/91 (hydrological years) 

- Precipitation in dry and wet years averaged over 
1959/60 – 1990/91 (hydrological years) 

 Secondary information 
- Elevation 

 OK 
 KED 
 Local regression 

 Overall error statistics computed after 
jackknife cross-validation: ME (mean error), 
MAE (mean absolute error expressed as a 
percentage), MSE (mean square error). 
 Best model: KED 

Ninyerola et al. 
(2007) 

 Study domain 
- Iberian Peninsula 
 Grid cells resolution 

- 200 m 
 Primary data 

- Annual and monthly rainfall averaged over 1950/99 
 Secondary information 

- Elevation 
- Latitude 
- Different types of distance from the sea (linear, 

logarithmic and quadratic) 
- Terrain curvature 
- Solar radiation 

 Combination of distance 
weighting methods (splines and 
inverse square distance) and 
regional regression (whole 
Peninsula) 
 Combination of distance 

weighting methods (splines and 
inverse square distance) and 
"local" regressions (main 
drainage basins) 
 Splines (as univariate 

interpolator) 
 Inverse square distance 

 40% of the meteorological stations were 
randomly selected and model comparisons 
were based on the determination coefficients 
from simple regressions between independent 
observed data and predicted values. 
 Best model (based on the mean of the 

determination coefficients): regional 
regression with splines interpolation of the 
residuals. 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Perry and Hollis 
(2005) 

 Study domain 
- United Kingdom 
 Grid cells resolution 

- 5 km  
- One grid for each year and one for each month of the 

1961/2000 period, derived independently 
 Primary data 

Monthly elements (records within 1961/2000): 
- Precipitation total 
- Nº days with rainfall ≥0.2mm  
- Nº days with rainfall ≥1mm 
- Nº days with rainfall ≥10mm 

Annual elements (records within 1961/2000): 
- Greatest five-day precipitation total 
- Rainfall intensity: average precipitation in wet days 

(rainfall ≥1mm) 
- Maximum number of consecutive dry days (rainfall 

<0.2mm) 
 Secondary information 

- Easting and northing 
- Elevation 
- Terrain shape (mean altitude over a 5 km radius centred 

10 km to the north, east, south and west of the station, 
or alternatively the mean altitude within a 5 km radius 
of the station) 

- Coastal effect (percentage of open water, including 
lakes and sea, within a 5 km radius of the station) 

- Urban effect (percentage of urban land use within a 5 
km radius of the station) 

(Different radii and directions were also considered) 

 Combination of distance 
weighting methods (IDW) and 
regional regression 

 Overall error statistics computed after 
removing samples procedure (randomly 
selected stations): ME (mean error) and 
RMSE (root mean square error), among 
others. 
 Best regression predictors: 
- Precipitation total  easting and northing 
- Nº days with rainfall ≥0.2mm  easting 

and northing, elevation, terrain shape 
- Nº days with rainfall ≥1mm  easting and 

northing 
- Nº days with rainfall ≥10mm  easting 

and northing, elevation, terrain shape 
- Greatest five-day precipitation total  

easting and northing, elevation, terrain 
shape, coastal effect 

- Rainfall intensity: average precipitation in 
wet days (rainfall ≥1mm)  easting and 
northing, elevation, terrain shape 

- Maximum number of consecutive dry days 
(rainfall <0.2mm)  easting and northing, 
elevation, coastal effect 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Prudhomme and 
Reed (1998) 

 Study domain 
- North west Highlands, Scotland 
 Grid cells resolution 

- Stations' locations only 
 Primary data 

- RMED: median of the annual maximum of daily 
rainfall (stations with at least 10 years of daily records) 

 Secondary information 
- 14 topographic variables derived from a DTM in a 1x1 

km grid (including elevation, geographical position 
represented by easting and northing in km of gauge grid 
point, distance from the sea considering different 
cardinal directions, and slope) 

Regional regression 

 The model fitted to the north west 
Highlands was tested in three regions: (i) the 
Highlands, as a whole, and its two sub-
regions: the north west Highlands (fitting 
region) and the Grampian Mountains; (ii) 
southern Scotland; (iii) the whole of Scotland. 
Evaluation used the traditional measures of 
regression diagnosis. 
 A 4-parameter regression model has been 

chosen and fitted to the Highlands area. The 
final model estimates the inverse of RMED 
using a mixture of geographical parameters 
(average distance from the sea in opposing 
directions) and of topographical parameters 
(obstruction against the prevailing wind, and 
roughness between the main moisture source 
and the gauge). 

Prudhomme and 
Reed (1999) 

 Study domain 
- North west Highlands, Scotland 
 Grid cells resolution 

- 1 km 
 Primary data 

- RMED: median of the annual maximum of daily 
rainfall (stations with at least 10 years of daily records) 

 Secondary information 
- Average distance from the sea in a 90° sector centred 

on SW direction 
- Average distance from the sea in a 90° sector centred 

on NE direction 
- Variable representing obstruction 
- Roughness index 

 OK 
 Combination of distance 

weighting methods (OK) and 
regional regression 

 Overall error statistics computed after 
jackknife cross-validation and removing 
samples procedure (validation stations 
selected from difficult areas): ME (mean 
error), RMSE (root mean square error) and 
bias. 
 Best model: combination of OK and 

regional regression 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Vicente-Serrano et 
al. (2003) 

 Study domain 
- Middle Ebro Valley, Spain 
 Grid cells resolution 

- 1 km 
 Primary data 

- Natural logarithm transformation of averaged annual 
precipitation (stations with at least 20 years of annual 
records within 1950/2000) 

 Secondary information 
- 21 topographic variables (longitude, latitude, distance 

to Mediterranean Sea, distance to Cantabrian Sea, 
incoming solar radiation, elevation, among other 
variables related to these ones) 

 Thiessen polygons 
 Inverse distance weighting 

(power=1, 2 and 3) 
 Splines 
 SK 
 OK 
 Block kriging 
 Directional kriging 
 Universal kriging 
 CoK with elevation 
 Combination of distance 

weighting methods (inverse 
square distance and splines) 
and regional regression 
 Regional regressions (linear 

and non-linear)  

 Overall error statistics computed after 
removing samples procedure (randomly 
selected stations): ME (mean error), MAE 
(mean absolute error), RMSE (root mean 
square error), among others. 
 Best models for precipitation based on 

MAE and RMSE: block kriging, followed 
closely by CoK 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Weisse and Bois 
(2001) 

 Study domain 
- French Alps 
 Grid cells resolution 

- 525, 1050, 1575, 2100, and 2625 m 
 Primary data 

- Statistical parameters of 1, 2, 3, 6, 12, and 24 h 
precipitation events with recurrence frequencies of 10 
(10-yr rainfall) and 100 yr (100-yr rainfall) 
Local values of these statistical parameters were 
estimated for time steps ranging from 1 h to 1 day by 
fitting a Gumbel distribution using the moments 
method for samples of seasonal monthly maxima 

 Secondary information 
- Stations’ altitude 
- Topographic variables corresponding to 10 principal 

components (obtained by PCA of 25 variables based on 
the altitudes surrounding a point) 

- Local variables describing height, exposure, tangents of 
a site, slope, and azimuths and radii of principal 
curvature 

- Regional variables: X and Y coordinates; distance to 
the Mediterranean; distance to the sea and to the 
Rhône; shape of the Alps; barrier effect 

 OK 
 Combination of distance 

weighting methods (OK) and 
regional regression 

 Error statistics computed after removing 
samples procedure (randomly selected 
stations): mean and standard deviation of the 
estimated and real values; and determination 
coefficient between the estimated and real 
values. 
 Best model: combination of OK and 

regional regression for time steps of 3 h or 
less; OK  for the remaining time steps 
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Reference Study domain and data 
Interpolation 
technique(s) 

Method used to compare the techniques 
and best model found 

Xia et al. (1999) 

 Study domain 
- Bavarian forest, Germany 
 Grid cells resolution 

- 1 km 
 Primary data 

- Monthly precipitation averaged over 1966/95 
 Secondary information 

- Elevation 
- x-direction and y-direction distance (Gauss-Krueger 

coordinates) 

 Barnes (Barnes, 1973) 
 Cressman (Cressman, 1959) 
 Optimum interpolation 
 Simple arithmetic average 
 IDW 
 Regional regression 

 MAE – mean absolute error calculated at 
three validation stations located in typical 
meteorological zones in the study area 
(representing a range of terrain and elevation 
conditions). 
 Best model for precipitation: Barnes 

interpolation combined with empirical 
transfer functions 
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2.3.3 Indices of precipitation extremes 

The joint working group on climate change detection of the World Meteorological 

Organization – Commission for Climatology (WMO–CCL) and the Research Programme on 

Climate Variability and Predictability (CLIVAR, Peterson et al., 2001; Frich et al., 2002; 

Peterson, 2005) defined a set of key indicators of changing extremes representing a wide 

variety of climate aspects. The proposed indices should be statistically robust with fairly short 

return periods. The definitions of some of those indices, as well as their calculations, were 

reconsidered by some authors mainly because of the estimation of percentiles (Moberg et al., 

2006; Sillmann and Roeckner, 2008). Table 2.7 presents the major indicators of daily 

precipitation extremes described and analyzed in recent literature and a few indices providing 

information about mean conditions, which are sometimes used for inter-comparisons. 

Numerous studies of changes in extreme weather events focus on linear trends in the indices, 

aiming to determine whether there has been a statistically significant shift in such indices of 

extremes. Table 2.8 summarizes the literature review on extreme precipitation indices. 

Table 2.7 – Indicators of daily precipitation extremes (no distinction made between annually, 
seasonally or monthly specified indices). Indices recommended by Peterson et al. (2001) and 

Frich et al. (2002) are denoted in bold 

Index Description and rationale Units

SDII – Simple 
daily intensity 
index 

It is defined as the average precipitation per wet day. A wet day is usually 
defined as a day with at least 1 mm of precipitation (R≥1mm). 
The SDII is particularly defined to examine scenarios of future climate 
change related with heavy precipitation events, as it monitors precipitation 
intensity on wet days (Kostopoulou and Jones, 2005). 

mm 

R30 or 
R30mm 

It is defined as the number of days with at least 30 mm of precipitation. 
The R30 index characterizes the frequency of extremely heavy precipitation 
days. 

days

R20 or 
R20mm 

It is defined as the number of days with at least 20 mm of precipitation. 
The R20 index characterizes the frequency of very heavy precipitation days. 

days

R10 or 
R10mm 

It is defined as the number of days with at least 10 mm of precipitation. 
The R10 index characterizes the frequency of heavy precipitation days. 
This indicator is highly correlated with total annual and seasonal precipitation 
in most climates (Peterson et al., 2001). 

days

R1day or 
RX1day 

It is defined as the highest 1-day precipitation total, thus it is an absolute 
extreme. mm 
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Index Description and rationale Units

5D-total 
It is defined as the highest (not consecutive) 5-day precipitation total. 
The 5D-total index characterizes the magnitude of extremely heavy 
precipitation days. 

mm 

R5D or 
RX5day 

It is defined as the highest consecutive 5-day precipitation total. 
The R5D index is a measure of short-term precipitation intensity, thus it is a 
potential flood indicator. 

mm 

R10D 
It is defined as the highest consecutive 10-day precipitation total. 
The R10D characterizes the magnitude of strong precipitation events. 

mm 

CWD 
It is defined as the maximum number of consecutive wet days. A wet day is 
usually defined as a day with at least 1 mm of precipitation (R≥1mm). 
The CWD index characterizes the maximum length of a wet spell. 

days

CDD 

It is defined as the maximum number of consecutive dry days. A dry day is 
usually defined as a day with less than 1 mm of precipitation (R<1mm). 
The CDD index characterizes the maximum length of a dry spell, thus it is a 
potential drought indicator. Real drought conditions, however, are caused by 
more complex conditions than captured by CDD, e.g. interactions of 
precipitation deficits as well as soil and land use characteristics (Tebaldi et 
al., 2006; Sillmann and Roeckner, 2008). 
It may be relevant for assessing climate changes effects on vegetation and 
ecosystems. A decrease in this indicator would reflect a wetter climate if 
change were due to more frequent wet days (Peterson et al., 2001; Frich et 
al., 2002). 

days

R99p 

It is calculated by first determining the 99th percentile threshold (site-specific 
value) of all events greater than 1 mm over the baseline period, and then 
counting the number of events above this threshold. 
The R99p index characterizes the frequency of extremely heavy precipitation 
days. 

days

R99p* 

It is calculated by first determining the 99th percentile threshold (mean value) 
of all events greater than 1 mm over the baseline period, and then counting 
the number of events above this threshold. 
The R99p index characterizes the frequency of extremely heavy precipitation 
days. 

days

R95p or R95% 

It is calculated by first determining the 95th percentile threshold (site-specific 
value) of all events greater than 1 mm over the baseline period, and then 
counting the number of events above this threshold. 
The R95p index characterizes the frequency of very wet days. 

days

R90p or R90N 

It is calculated by first determining the 90th percentile threshold (site-specific 
value) of all events greater than 1 mm over the baseline period, and then 
counting the number of events above this threshold. 
The R90p index characterizes the frequency of very heavy precipitation days. 
Increasing (decreasing) trends of R90p are indicators of a change in the mean 
of the precipitation distribution towards a wetter (drier) climate (Kostopoulou 
and Jones, 2005). 

days
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Index Description and rationale Units

R75p or R75% 

It is calculated by first determining the 75th percentile threshold (site-specific 
value) of all events greater than 1 mm over the baseline period, and then 
counting the number of events above this threshold. 
The R75p index characterizes the frequency of moderate wet days. 

days

R95T or 
R95pTOT or 
R95%tot 

It is determined as the proportion (percentage) of total precipitation from 
events greater than long-term 95th percentile of wet days. 
It is computed as Rw/Rtot, where Rw is the sum of daily precipitation amounts 
above the 95th percentile of the distribution of daily precipitation totals at 
days with 1 mm or more precipitation in the baseline period; and Rtot is the 
annual precipitation total. 
The R95T index characterizes the proportion of total precipitation falling 
during extreme precipitation events. 
This index may be highly correlated with the number of extreme events, 
because a year with more events above the threshold will usually show a 
larger proportion of the total rainfall from these events simply because there 
are more events (Frich et al., 2002). 
The index R95%tot allows exploring the supposed augmented response of the 
extreme precipitation events relative to the change in total amount, and it is 
not sensitive to changes in the number of wet days (Klein Tank and Können, 
2003). 
At stations where the annual amount increases, positive R95%tot trends are 
indicative of a disproportionate large contribution of the extremes to this 
wetting. On the other hand, at stations where the annual amount decreases, 
positive R95%tot trends indicate that the very wet days are less affected than 
the other wet days. Negative R95%tot trends indicate a smaller than 
proportional contribution of very wet days to wetting or drying (Klein Tank 
and Können, 2003). 

% 

R90T 

It is determined as the proportion (percentage) of total precipitation from 
events greater than long-term 90th percentile of wet days. 
It is computed as Rw/Rtot, where Rw is the sum of daily precipitation amounts 
above the 90th percentile of the distribution of daily precipitation amounts at 
days with 1 mm or more precipitation in the baseline period; and Rtot is the 
annual precipitation total. 
The R90T index characterizes the proportion of total precipitation falling 
during very intense events. 

% 

PREC95p 

This index is determined as the total precipitation from events greater than 
the 95th percentile of wet day amounts for a specified baseline period. 
The PREC95p index characterizes the upper tail of the precipitation 
distribution providing an indicator of the magnitude of very strong 
precipitation events. 

mm 

PREC90p or 
RQ90 

This index is determined as the total precipitation from events greater than 
the 90th percentile of wet day amounts for a specified baseline period. 
The PREC90p index characterizes the magnitude of strong precipitation 
events. 

mm 
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Index Description and rationale Units

PREC90p*, 
PREC95p*, 
PREC98p* 

These indices are determined as the total precipitation from events greater 
than the 90th, 95th and 98th percentiles, respectively, of all daily precipitation 
amounts (both wet and dry days) for a specified baseline period. 
These indices characterize the magnitude of strong to extremely strong 
precipitation events (Moberg et al., 2006). 

mm 

R4a 

It is determined as the average precipitation amount of the highest 4 events. 
The R4a index characterizes the magnitude of extremely heavy precipitation 
events by describing changes in the upper percentiles. 
If R95aw has a stronger positive trend than R4a, it can be explained by 
considering a rainfall distribution whose shape remains constant over time 
but whose population (rain days) decreases. As the number of rain days 
decreases, the 4th highest events would be expected to decrease (Haylock and 
Nicholls, 2000). 

mm 

R95aw 

It is calculated by first determining the 95th percentile threshold of all events 
greater than 1 mm over the baseline period, and then averaging the daily 
rainfall amounts above this threshold. 
The R95aw characterizes the magnitude of heavy precipitation events. 
A reduction (increase) in the number of days with low rainfall will lead to an 
increase (decrease) in this index. This is because the number of rain days will 
change, which will affect the threshold used in the calculation of the index. 
With a reduction in the population but no change in the frequency of higher 
events, the upper percentiles would be expected to rise. This is not the case if 
the extreme intensity is calculated using all days [R95a index] (Haylock and 
Nicholls, 2000). 

mm 

R95a 

It is calculated by first determining the 95th percentile threshold of all events 
over the baseline period, and then averaging the daily rainfall amounts above 
this threshold. 
The R95a characterizes the magnitude of heavy precipitation events. 

mm 

R4a% 

It is determined as the ratio between the R4a index and the total rainfall. 
The R4a% index measures how much of the total rain comes from extremely 
heavy precipitation events. It is an indicator of changes in the shape of the 
rainfall distribution. 

% 

R95aw% 
It is determined as the ratio between the R95aw index and the total rainfall. 
The R95aw% index measures how much of the total rain comes from extreme 
events. It is an indicator of changes in the shape of the rainfall distribution. 

% 

R95a% 

It is determined as the ratio between the R95a index and the total rainfall. 
The R95a% index measures how much of the total rain comes from heavy 
precipitation events. It is an indicator of changes in the shape of the rainfall 
distribution. 

% 

C1,…, C10 
quantile 
classes 
(1st and 10th 
classes are 
extreme) 

Proportion of daily precipitation falling into 10 precipitation class-intervals in 
a period compared with the corresponding total precipitation. % 
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Index Description and rationale Units

Rmean – Mean 
climatological 
precipitation 

If Rij corresponds to the daily  precipitation total for day i of period j, then the 
mean climatological precipitation in period j is 

∑
=

=
I

1i
ijmean IRR

j
 

This is not an extreme index, but rather an indicator of change of the normal 
moisture availability within a region (Kostopoulou and Jones, 2005). 

mm 

PCI –  
Precipitation 
concentration 
index 

If Rij corresponds to the daily precipitation total for day i of period j, then the 
precipitation concentration index is 
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The PCI is used to analyse and compare the concentration of rainfall due to 
its emphasis on the relative distribution of rainfall irrespective of the total 
rainfall received. This is not an extreme indicator. 
PCI monthly values lower than 10 indicate a uniform distribution of the 
monthly rainfall along the year; values between 11 and 20 point to a certain 
seasonal trend, and values above 20 indicate an appreciable variability in the 
monthly distribution of annual rainfall (Ceballos et al., 2004). 

% 

WD 
It is determined as the number of wet days (usually, R>=1mm) 
This is not an extreme indicator. 

days

TP 
It is determined as the annual/seasonal/monthly precipitation total. 
This is not an extreme indicator. 

mm 

TPw 
It is determined as the total precipitation amount on wet days (usually, 
R>=1mm) 
This is not an extreme indicator. 

mm 

About 50 indices for monitoring and analysing changes in climate extremes in Europe were 

developed under the framework of the project European Climate Assessment & Dataset (ECA 

project, e.g. Klein Tank et al., 2002; Klein Tank and Können, 2003). The indices were 

calculated following the definitions recommended by the WMO–CCL/CLIVAR/JCOMM 

Expert Team on Climate Change Detection and Indices (http://eca.knmi.nl/, retrieved 17 

March 2008). A dictionary of 40 indices is also provided on the ECA project Web site, giving 

an overview of which indices have been used by different research groups. 

Further development on the definition of extremes indices has been undertaken in a project 

named Statistical and Regional Dynamical Downscaling of Extremes for European Regions 

(STARDEX project, e.g. Haylock and Goodess, 2004). This project is aimed to "provide a 

rigorous and systematic inter-comparison and evaluation of statistical, dynamical and 
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statistical-dynamical downscaling methods for the construction of scenarios of extremes" 

(STARDEX, http://www.cru.uea.ac.uk/cru/projects/stardex/, retrieved 17 March 2008). 

Under the framework of another project, named European and North Atlantic Daily to 

Multidecadal Climate Variability (EMULATE project, e.g. Moberg et al., 2006), the list of 

indices calculated for STARDEX has been extended and the EMULATE catalogue contains 

64 climate indices. This project aims to extend the availability of daily historic records of air 

pressure over the extratropical Atlantic and Europe, for the period 1850 to the present. "Once 

the record has been extended, atmospheric circulation patterns will be derived and 

relationships between the circulation, sea-surface temperatures and surface temperature and 

precipitation patterns across Europe evaluated, and compared with model simulations." 

(http://www.cru.uea.ac.uk/cru/projects/emulate/, retrieved 17 March 2008). 
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Table 2.8 – Literature review on extreme precipitation indices (for definitions see Table 2.7) 

Reference Precipitation indices Methodology / Approach 

Alexander et al. 
(2006) 

 Study period & 
region  
- Global, 1901/2003 

 Index 
- SDII 
- R1day 
- R5D 
- R10 
- R20 
- CDD 
- CWD 
- PREC90p 
- PREC95p 
- R95T 
- TP 

 The indices were computed using the RClimDex  and 
FClimDex software packages 
(http://cccma.seos.uvic.ca/ETCCDMI/software.shtml, 
retrieved 12 March 2008). In the estimation of 
percentiles, a bootstrapping method was applied to avoid 
inhomogeneities at the boundaries of baseline periods for 
all percentile-based indices. 
 Seasonal and annual indices for the period 1951/2003 

were gridded (cells with 2.5 degrees of latitude by 3.75 
degrees of longitude) using a modified version of 
Shepard's angular-distance weighting algorithm. 
 Trends in station and grid point data were computed and 

tested for statistical significance. Trends were estimated 
using the nonparametric Kendall’s tau based slope 
estimator. An iterative procedure was adopted to compute 
the magnitudes of trends and to test their statistical 
significance (5% level) taking into consideration the serial 
correlation in the residuals. The grid boxes used to 
calculate trends had data ending no earlier than 1999 and 
had at least 80% of the records for the period under 
consideration. 
 A bootstrap technique, similar to the one used by 

Kiktev et al. (2003), was used to test if the pattern of 
trends estimated from the actual station data was due to 
climate noise. Since this method is computationally 
expensive, field significance was only calculated for the 
annual indices. 
 Empirical probability distributions of the indices were 

derived from approximately 600 precipitation stations, 
with near-complete data for 1901/2003 and covering a 
very large region of the northern hemisphere mid latitudes 
and parts of Australia, and then compared for the periods 
1901/50, 1951/78 and 1979/2003. The comparisons were 
done using a 2-tailed Kolmogorov-Smirnov test with a 
null hypothesis that two cumulative distribution functions 
computed for two periods are identical. 

Bonaccorso et 
al. (2005) 

 Study period & 
region  
- Sicily, 1920/2000 

 Index 
- R1day 

 The t-test was used for linear trend detection, and the 
Mann-Kendall test was used for non-linear trend 
detection. The trend significance was determined by the 
traditional asymptotic distributions of the statistics, as 
well as by a bootstrap approach. 
 The return period of one storm (21-22 Nov, 2003) was 

determined using the Gumbel distribution. The effect of 
trend in the index on this assessment was investigated. 
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Reference Precipitation indices Methodology / Approach 

Brunetti et al. 
(2001) 

 Study period & 
region  
- Italy, 1951/96 

 Indices 
- SDII 
- C1,…, C10 classes 
- WD 
- TP 

 The regional and sub-regional average series were 
calculated by simply averaging the series over all the 
stations in the area. 
 The slope of the trend was calculated by ordinary least 

squares (OLS) and the trend significance was determined 
using the Mann–Kendall nonparametric test. 

Ceballos et al. 
(2004) 

 Study period & 
region  
- Duero Basin, Spain, 

1967/2000 

 Index 
- PCI 

 The time series of the monthly index and the average 
monthly distribution of annual rainfall were smoothed 
and, afterwards, the Spearman rank correlation test was 
applied to assess the trend significance. 
 PCI monthly values lower than 10 indicate a uniform 

distribution of the monthly rainfall along the year; values 
between 11 and 20 point to a certain seasonal trend, and 
values above 20 indicate an appreciable variability in the 
monthly distribution of annual rainfall. 

Frich et al. 
(2002) 

 Study period & 
region  
- Global (except Africa 

and south America), 
1946/99 

 Indices 
- SDII 
- R10 
- R5D 
- CDD 
- R95T 

 Each individual station record was divided in half, and 
the average of one post-1946 multi-decadal period was 
compared to another by means of a t-test (mathematical 
description in paper appendix). 
 Aiming to spatially average the results of each indicator 

time series, the anomalies in each year of the indicator 
time series were calculated from a base period of 1961/90 
(mathematical description in paper appendix). The trend 
of each has been calculated by weighting the anomalies 
according to the number of stations available from the 
network each year and has been tested for significance 
using weighted linear regression analysis. 
 Probability density functions were calculated by giving 

each indicator a number of 'bins' across its range and 
calculating the corresponding frequency, similar to 
producing histograms. The result was then normalised to 
sum to one to give estimated probabilities rather than a 
frequency distribution. 

Goodess and 
Jones (2002) 

 Study period & 
region  
- Iberian Peninsula, 

1958/97 

 Indices 
- Rmean 
- WD 
- TPw 
- C1,…, C10 classes 

 The slope of the trend was calculated by OLS and the 
trend significance (10% level) was determined using an 
F-test. 
 Principal component analysis was performed on the 

trends of the C1,…, C10 quantile classes. 
 Links between an automated circulation classification 

scheme and the North Atlantic Oscillation (NAO) were 
analysed, as were the direct links between rainfall and the 
NAO. 
 Trends in rainfall and circulation-type frequency are 

compared by linear regression analyses using circulation-
type frequencies as predictor variables for rainfall totals 
for winter months. 
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Reference Precipitation indices Methodology / Approach 

Griffiths et al. 
(2003) 

 Study period & 
region  
- South Pacific, 

1961/2000 

 Indices 
- WD 
- TP 
- 5D-total 
- CDD 
- R99p* 
- R4a 
- R4a% 

 The slope of the trend was calculated by OLS and the 
trend significance (5% level) was determined using the 
Mann-Kendall ranked t test. 
 The relationship between the indices was investigated 

through several procedures. Correlations between the 
indices were computed and their significance was 
assessed using p-values adjusted by the Bonferroni 
correction. A principal component analysis and a 
hierarchical cluster analysis were also performed. 
 A t-test using the Bonferroni correction was used to 

verify differences between orographic extremes (stations 
located in mountainous regions) and convective extremes 
(stations located in flat regions). 
 The Pettitt test was used to identify change points 

(climatic jumps) in the indices at each individual station. 
Whenever a break point was found, the trend was also 
tested before and after the break. 

Haylock and 
Goodess (2004) 

 Study period & 
region  
- Europe, 1958/2000 

 Indices 
- R10D 
- CDD 
- R90p values 

normalized for the 
number of missing 
days 

- PREC90p 

 The indices were computed using the STARDEX 
software (http://www.cru.uea.ac.uk/cru/projects/stardex/, 
retrieved 12 March 2008). 
 The slope of the trend was calculated by a three-group 

resistant line method and the trend significance (5% level) 
was assessed by the Kendall-tau test. 
 A principal component analysis, using Monte Carlo 

simulations to find the number of components to retain 
for rotation, was performed to determine the major modes 
of inter-annual variability. 
 The relationship between each index and mean 

atmospheric circulation was investigated by 
- looking at the relationship between the principal 

components of the index and other surface and upper-
air variables; 

- canonical correlation analysis to quantify the 
relationship between the index and sea-level pressure. 
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Reference Precipitation indices Methodology / Approach 

Haylock and 
Nicholls (2000) 

 Study period & 
region  
- Australia, 1910/98 

 Indices 
- R95p 
- R4a 
- R95aw (a cut-off of 15 

days was used as the 
minimum number of 
rain days for which the 
95th percentile could 
be calculated) 

- R95a 
- R4a% 
- R95aw% 
- R95a% 

 The slope of the trend was calculated by OLS and the 
trend significance (5% level) was determined using the 
Kendall-tau test. 
 The problems associated with determining statistical 

significance of trends of series that are averages of other 
series have been addressed using an alternative test of 
significance. Each component series was normalized by 
replacing each value in the series with its rank, then 
applying the Kendall-tau test to the average of the ranked 
series. All trends that were found to be significant using 
the Kendall-tau test on the average of the raw series were 
also significant using this ‘rank’ test. 
 The relationship between each index and total rainfall 

was assessed by calculating correlations between them. 

Hundecha and 
Bárdossy 
(2005) 

 Study period & 
region  
- German part of the 

Rhin basin, 1958/2001

 Indices 
- SDII 
- 5D-total 
- CDD 
- R90p 
- R90T 
- PREC90p 

 The indices were computed using the STARDEX 
software (http://www.cru.uea.ac.uk/cru/projects/stardex/, 
retrieved 12 March 2008). 
 The Kendall-tau test was used with permutation to 

assess the presence of trend and to calculate the 
corresponding significance level. The trend magnitude 
was determined by OLS. 
 Daily precipitation was interpolated on a 5km×5km grid 

through external drift kriging using as secondary variable 
the square root of topographic elevation. Afterwards, the 
indices were calculated on grids of 5, 10, 25, 50 km to 
investigate the effect of upscaling on trends, and to make 
comparisons with trend analysis at point scale. 

Kiktev et al. 
(2003) 

 Study period & 
region  
- Global, 1950/95 

 Indices 
- SDII 
- R10 
- R5D 
- CDD 

 The slope of the trend was calculated by OLS for 
stations with more than 35 years of data. 
 A spatial autocorrelation function was determined as the 

region-mean correlation estimated for each 100–km 
interval, and an exponential decay function was fitted by 
OLS (applied to indices and trend). 
 The trends were gridded by a modified version of 

Shepard's angular-distance weighting algorithm. 
 Bootstrap was used to estimate the significance (10% 

level for SDII, and 5% level for R10, R5D, CDD) of trend 
at each grid point. 
 Bootstrap was used to test if the pattern of trends 

estimated from the actual station data was due to climatic 
noise. 
 The gridded trend estimates were compared with those 

simulated by a suite of climate model runs using 
probability distribution functions by estimating similarity 
measures (centred pattern correlation, congruence, 
regression, amplitude). 
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Reference Precipitation indices Methodology / Approach 

Klein Tank et 
al. (2002) 

 Study period & 
region  
- Europe, 1946/99 

 Indices 
- SDII 
- WD 
- TP 

 The slope of the trend was calculated by OLS and the 
trend significance was determined using a t-test (5% and 
25% levels). 

Klein Tank and 
Können (2003) 

 Study period & 
region  
- Europe, 1946/99 

 Indices 
- R20 
- R10 
- R1day 
- R5D 
- R75p 
- R95p 
- R95T 

 Propose an expression to determine indices' return 
periods, and show that the selected indices are 
expressions of events with return periods of 5–60 days. 
 The slope of the trend was calculated by OLS and the 

trend significance was determined using a Student’s t-test 
(5% and 25% levels). 
 The probability of detecting trends in time series 

depends on the trend magnitude, the record length, and 
the statistical properties of the variable of interest, 
especially the variance. Therefore, the signal-to-noise 
ratio was proposed to detect the relative trend with a 
given probability of q%. 
 The dependence of signal-to-noise ratio on the 

significance level for different detection probabilities was 
analysed. Moreover, the relative trend that is required for 
a given q% detection probability (significance level 5%) 
was also investigated. 

Kostopoulou 
and Jones 
(2005) 

 Study period & 
region  
- Eastern 

Mediterranean, 
1958/2000 

 Indices 
- SDII 
- Rmean 
- R10 
- R5D 
- CDD 
- R90p 
- R90T 
- PREC90p 

 The indices were computed using the STARDEX 
software (http://www.cru.uea.ac.uk/cru/projects/stardex/, 
retrieved 12 March 2008). 
 The slope of the trend was calculated by OLS and the 

trend significance was determined using the Kendall-tau 
test (5% level). 
 The time series of regional standardised anomalies were 

determined using the methodology described by Frich et 
al. (2002). 

Martínez-
Casasnovas et 
al. (2002) 

 Study period & 
region  
- Alt Penedès–Anoia 

region, Catalonia, 
Spain, 19??/2000 

 Index 
- PCI 

 This study characterizes an extreme rainfall event (10 
June 2000) that caused soil erosion in the region. 
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Reference Precipitation indices Methodology / Approach 

Moberg and 
Jones (2005) 

 Study period & 
region  
- Central and western 

Europe, 1901/99 

 Indices 
- SDII 
- R5D 
- CDD 
- R90p 
- R90T 
- PREC90p 

 The indices were computed using the ClimDex software 
(http://cccma.seos.uvic.ca/ETCCDMI/software.shtml, 
retrieved 12 March 2008). 
 The slope of the trend was calculated by OLS and the 

resistant method. 
 The trend significance (5% level) was determined using 

the methodology described by Kiktev et al. (2003). 
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Reference Precipitation indices Methodology / Approach 

Moberg et al. 
(2006) 

 Study period & 
region  
- Europe, 1901/2000 

 Indices 
- SDII 
- PREC90p* 
- PREC95p* 
- PREC98p* 
- TP 

 The indices were computed for the winter (Dec.-Feb.) 
and summer (Jun.-Aug.) seasons using the software 
developed for the EMULATE project 
(http://www.cru.uea.ac.uk/cru/projects/emulate/, retrieved 
17 March 2008). 
 In the estimation of percentiles, a bootstrapping method 

was applied to avoid inhomogeneities at the boundaries of 
baseline periods for all indices that count the number of 
occurrences above (or below) a percentile-based 
threshold. 
 The slope of the trend was calculated by OLS and the 

trend significance (5% level) was determined using a two-
tailed t-test where the degrees of freedom were reduced to 
account for serial correlation (lag-1 autocorrelation). 
 Trend analysis was performed in three different ways 

for each index: (i) comparing Europe-average trends in 
the means with trends in the percentiles; (ii) analysing the 
spatial distribution of statistically significant trends for 
different indices; (iii) comparing the pattern of trends in 
the various indices in six selected sub-regions. 
i) For stations satisfying completeness criteria, the 

average trends were calculated for each index to 
obtain Europe-wide averages. Estimates of the 
uncertainties in these averages were provided by 
classical 95% confidence intervals using the t-
distribution. 

ii) A number of maps showing trends in indices were 
produced using more stations because the 
completeness criteria were relaxed. 

iii) Precipitation trends were expressed as percentages of 
the 1961/90 climatological average for each respective 
index. To account for the problem of very rare 
precipitation events at some stations, the 1961/90 
seasonal mean values of the precipitation indices must 
exceed 1 mm for inclusion in the trend analyses. 

 The linear (Pearson) correlation coefficient was 
calculated to see how similar, or how different, the index 
time series for mean conditions are compared with those 
for the various percentiles. 
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Reference Precipitation indices Methodology / Approach 

Sillmann and 
Roeckner 
(2008) 

 Study period & 
region  
- Global (most of the 

world) and regional 
analysis for three 
European regions 
(southern, central and 
northern Europe) 

- Indices based on 
observational data 
correspond to the 
1951/2003 period 
(HadEX indices) 

 Indices 
- SDII 
- R1day 
- R5D 
- R10 
- R20 
- CDD 
- CWD 
- PREC95p (denoted by 

R95p in the paper) 
- TPw (denoted by 

PRCPTOT in the 
paper) 

 The "model-based indices" were calculated on the basis 
of the global climate model ECHAM5/MPI-OM 
simulations of the twentieth century and SRES A1B and 
B1 emission scenarios for the twenty-first century, using 
the FClimDex software 
(http://cccma.seos.uvic.ca/ETCCDMI/software.shtml, 
retrieved 17 March 2008). 
 All observation-based indices were first calculated for 

all weather stations and then interpolated onto the 
latitude-longitude grid (3.75°×2.5°, 96×73 grid boxes), 
whereas the model-based indices were calculated from the 
variables representative for the whole gridbox area. The 
authors did not specify which interpolation technique was 
used. 
 For model evaluation, the model-based indices 

representing the present climate were compared with the 
observation-based indices using global maps and time 
series corresponding to spatial averages of the indices for 
the three European regions. The global maps allow a 
comparison of the large-scale patterns of the individual 
indices. 
 The present-day climate state (1971–2000) was derived 

from the 20C ensemble, the future one (2071–2100) from 
the three ensemble members of the scenario runs A1B and 
B1, respectively. To detect changes in the indices, the 
time means for these periods were compared. The 
statistical significance of the differences between these 
climate states was assessed through a non-parametric test. 

 

2.3.3.1 Spatial interpolation of extreme precipitation 

The number of studies analyzing space-time patterns of extreme precipitation indices at the 

regional and local scales is very limited. The literature review of the previous sections shows 

that the large majority of studies only focus on the temporal linear trends of the indices (e.g., 

Table 2.6 and Table 2.8). Although desirable, a spatial analysis is sometimes not feasible due 

to the sparse number of monitoring stations over large study regions (Klein Tank and Können, 

2003; Moberg et al., 2006). 

Faulkner and Prudhomme (1998) and Prudhomme and Reed (1998, 1999) analysed an index 

of extreme rainfall, named RMED – median of the annual maximum rainfall, which can be 

computed considering different rainfall durations (e.g., 1 hour or 1 day). Prudhomme and 



LI T E R A T U R E R E V I E W 

 131

Reed (1998) found that the spatial distribution of RMED (1 day) did not depend on elevation 

in a simple way in mountainous regions of Scotland, but rather reflected more complex 

relationships with relief and position relative to moisture sources. For this reason, Prudhomme 

and Reed (1999) thought very unlikely that the cokriging method, using just one external 

variable for interpolation of RMED (1 day), would improve the mapping over Scotland. 

Therefore, Prudhomme and Reed (1999) compared the application of ordinary kriging and 

modified residual kriging (uses ordinary kriging to interpolate the residuals of a regional 

regression using four explanatory topographical variables). Not surprisingly, the later was 

concluded as the most suitable for mapping the median of annual maximum daily rainfall in 

Scotland. Faulkner and Prudhomme (1998) used the modified residual kriging procedure to 

interpolate the RMED, computed using different rainfall durations (from 1 hour to 8 days), 

over the United Kingdom. These authors concluded that the relationship between topographic 

features and precipitation decreases with increasing time resolution, making it more difficult 

to model. 

Hundecha and Bárdossy (2005) interpolated the station values of daily precipitation, over a 

5km x 5km grid for the German part of the Rhin basin, through external drift kriging using as 

secondary variable the square root of topographic elevation. Afterwards, several extreme 

precipitation indices (Table 2.8) were calculated on grids of 5, 10, 25 and 50 km2 to 

investigate the effect of upscaling on trends, and to make comparisons with trend analysis at 

point scale. 

Perry and Hollis (2005) used a combination of distance weighting methods (IDW) and 

regional regression to produce gridded data sets (5 km grid cells) of several extreme 

precipitation indices (Table 2.6), one for each year and one for each month of the 1961/2000 

period, for the United Kingdom. 

In order to compare observed indices with global climate model simulations, Kiktev et al. 

(2003) gridded some of the Frich et al. (2002) indices data (Table 2.8) onto a regular latitude-

longitude grid, using a modified version of Shepard’s angular distance weighting (ADW) 

algorithm. This method was also used by Alexander et al. (2006) to produce global grids for a 

number of extreme precipitation indices (Table 2.8), but the trends computed on the grids 

showed little significance. Kiktev et al. (2003) and Alexander et al. (2006) used coarse 

resolution grids of the world. 
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Sillmann and Roeckner (2008) computed several indices for precipitation extremes (Table 

2.8) based on the global climate model ECHAM5/MPI-OM simulations of the twentieth 

century and SRES A1B and B1 emission scenarios for the twenty-first century. These model-

based indices were calculated from the variables representative for the whole gridbox area, 

whereas observation-based indices were first calculated for all weather stations and then 

interpolated onto the latitude-longitude grid. Sillmann and Roeckner (2008) did not specify 

which interpolation technique was used. The model-based indices representing the present 

climate were compared with the observation-based indices, and projected changes were 

analysed (see Table 2.8 for further methodological details). This comparison showed that, 

depending on the index and region under consideration, the model was able to realistically 

capture the observed climatological large-scale patterns of temperature and precipitation 

indices. However, the model biases were substantial for the extreme precipitation indices in 

southern Europe. Sillmann and Roeckner (2008) argue that, to some extent, this might be due 

to methodological differences in the computation of observation-based and model-based 

indices, because the later were computed on coarse resolution grids that lead to a stronger 

smoothing of extremes. Moreover, according to Santos et al. (2007), the direct comparison 

between the simulated precipitation in a specific gridbox and the precipitation observed at a 

single station within that gridbox can be misleading, because the numerical models simulate 

area-averaged values rather than local values. 

2.3.3.2 Portugal and Mediterranean regions 

Brunetti et al. (2001) analysed the trends in the daily intensity of precipitation in Italy from 

1951 to 1996 (Table 2.8), and concluded that the trend for the number of wet days per year is 

significantly negative throughout Italy, stronger in the north than in the south. Their results 

also show that there is a tendency toward an increase in precipitation intensity. However, they 

verified that this increase is globally less strong and significant than the decrease in the 

number of wet days. Moreover, Brunetti et al. (2001) concluded that, in northern Italy, the 

increase in precipitation intensity is mainly owing to a strong increase in the heaviest events, 

while in central–southern Italy, it depends on a larger part of the distribution of wet day's 

amounts. The analysis of the evolution of the class-interval contributions (see Table 2.7 for a 

description) shows that the positive trend of the heaviest events starts in the 1970s, as does the 

negative trend of lightest events. 
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Similarly, the results from Kostopoulou and Jones (2005), for the period 1958/2000, show 

significant positive trends towards intense rainfall events and greater amounts of precipitation 

on the western part of the study region, which was represented by Italian stations. In contrast, 

the eastern half shows negative trends in all precipitation indices indicating drier conditions in 

recent times. Significant positive trends were revealed for the index of maximum number of 

consecutive dry days (CDD), especially for stations in southern regions. 

Haylock and Goodess (2004) analysed the trends in several extreme precipitation indices, for 

the winter months (Dec.-Feb.) of the period 1958/2000, over Europe (Table 2.8). In the 

northwest of the Iberian Peninsula, the results showed a small decrease in CDD, while the rest 

of the peninsula has seen large increases in this index. In contrast, the frequency of very 

heavy precipitation days (R90p index) showed a decrease over most of the peninsula 

(including the northwest), but a slight increase in the southeast. Haylock and Goodess (2004) 

have also analysed the influence of the NAO10 on the indices. A canonical correlation analysis 

of each of the two indices (CDD and R90p) with mean sea-level pressure has revealed that the 

NAO is an important influence on extreme rainfall over Europe. Their results suggest that the 

observed trends in CDD and R90p are mainly due to changes in the NAO. Furthermore, they 

found similar results for two other indices: R10D and PREC90p (see Table 2.7). 

Moberg et al. (2006) analysed the trends in several extreme precipitation indices, for the 

winter (Dec.-Feb.) and summer (Jun.-Aug.) seasons of the period 1901/2000, over Europe 

(Table 2.8). The recent observed decrease in Mediterranean winter precipitation in other 

studies (e.g., Klein Tank and Können, 2003; Kostopoulou and Jones, 2005) did not emerge in 

a comparable manner on the centennial timescale considered by Moberg et al. (2006). 

Moreover, a dominance of insignificant winter precipitation trends was found on the Iberian 

Peninsula. Trends in precipitation percentiles in summer were difficult to assess for the 

Mediterranean climate, because the number of wet days was often so small that trends became 

difficult to interpret. 

Under the framework of the ECA project (http://eca.knmi.nl, retrieved 17 March 2008), about 

50 indices of extreme events have been calculated for the 1946/2006 period over Europe, and 

                                                 

10 Haylock and Goodess (2004) calculated the NAO using the Gibraltar–Iceland pressure difference, 
and used a Dec.-Feb. average of this index in their analysis. 
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analysed further by several authors (e.g., Klein Tank et al., 2002; Klein Tank and Können, 

2003; Moberg and Jones, 2005; Alexander et al., 2006). Note that the series used for those 

indices calculation are "blended series", i.e. most missing values were replaced by using 

nearby stations' data and updated using synoptical messages. Klein Tank and Können (2003) 

searched for trends in several annual indices of precipitation extremes for the period 1946/99, 

over Europe (Table 2.8), and found no significant trends (5% level) in the indices calculated 

for the southern region of Portugal. Considering the annual precipitation indices available at 

the ECA project Web site (http://eca.knmi.nl, retrieved 17 March 2008) for the whole 

1946/2006 period, the conclusions for the southern region of Portugal are identical, i.e. there 

are no significant trends in the annual precipitation indices. However, the seasonal analysis 

reveals a few significant trends (5% level) and regional contrasts in the indices: 

- The maximum number of wet days (CWD) has decreasing trends in Lisboa and Tavira 

stations in the winter-half season (Oct.-Mar.), as well as in Beja station in spring 

(Mar.–May). In winter (Dec.-Feb.), the decreasing trend in Lisboa and Tavira stations 

is stronger. 

- The frequency of heavy precipitation days (R10) has a negative trend in Tavira in 

spring (Mar.–May), and Lisboa has a positive trend in autumn (Sep.-Nov.). 

- The frequency of very heavy precipitation days (R20) has a negative trend in Beja in 

spring. 

- The highest 1-day precipitation total (R1day) has a positive trend in Beja in the 

summer-half season (Apr.-Sep.), whereas it has a negative trend in Lisboa in winter 

and a negative trend in Tavira in spring. 

- The intensity of short-term precipitation (R5D) has negative trends in Lisboa and 

Tavira in spring. 

- The frequency of moderate wet days (R75p) has a negative trend in Tavira in spring. 

- The frequency of very wet days (R95p) has negative trends in Beja and Tavira in 

spring. 

- The precipitation fraction due to very wet days (R95T) has a negative trend in Lisboa 

in winter and a negative trend in Tavira in spring. 
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- The frequency of extremely wet days (R99p) has a negative trend in Tavira in spring, 

whereas it has a positive trend in summer (June-Aug.) in Beja. 

Moreover, a negative trend in spring precipitation, especially in March, has been detected in 

the south of Portugal (Corte-Real et al., 1998; Santo et al., 2004; Trigo and DaCamara, 2000). 

Rodrigo and Trigo (2007) investigated annual and seasonal trends in five precipitation 

variables, aiming to analyse the behaviour of daily rainfall in the period 1951–2002, using 

data from 22 stations scattered across the Iberian Peninsula. Among these stations, five of 

them are located in southern Portugal: Lisboa, Grândola, Serpa, Relíquias and Monforte. The 

few significant trends (determined through the Mann–Kendall test at the 5% level) found for 

these five stations can be summarized as follows: 

- The total amount of rainfall has annual negative trends in Relíquias, as well as in 

winter (Dec.–Feb.) and spring (Mar.–May). Decreasing trends are also reported for 

Monforte in spring and for yearly values. 

- The number of wet days (0.1 mm threshold) has a positive trend in spring for 

Relíquias, while it has a negative signal in Monforte in spring, summer (Jun.–Aug.) 

and for yearly values. 

- The average precipitation per wet day (daily intensity index) has negative trends in 

Relíquias in all seasons and for yearly values. A decreasing is trend is also reported in 

Grândola in the summer season. 

- The 95th percentile11 and the percentage of rain falling on days with rainfall above the 

95th percentile both have negative trends in Relíquias in all seasons and for yearly 

values. These variables have decreasing trends in Grândola in spring and summer, 

whereas Serpa has increasings trends for yearly values. 

Based on an F-test, Goodess and Jones (2002) identified a significant (at the 10% level) 

decrease of the number of rain days during the winter season in Mértola for the period 

1958/94. Moreover, this decrease was not compensated by an increase of the wet day amount 

(no trend present). The mean precipitation total also showed a decreasing tendency in winter, 

                                                 

11 The 95th percentile was determined by fitting an appropriate gamma distribution to the data. 
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although not significant. For spring and autumn, no significant trends were found for the 

number of rain days, wet day amount and mean seasonal rainfall in Mértola. Regarding the 

trend analysis of extreme rainfall amounts, those authors proceeded as follows. For each 

station and month, all wet-day amounts for the period 1958/97 were sorted into ascending 

order and then grouped into ten classes. In order to identify any spatially coherent patterns in 

the data, a principal component analysis of the quantile trends was undertaken. However, the 

leading winter principal component, for example, explains only 26% of the variance over the 

peninsula, hence the identified trends are very weak and the results have little consistency. 

Tebaldi et al. (2006) focused primarily on changes of extremes in future climate projections, 

whereas Sillmann and Roeckner (2008) not only analysed projected changes but also 

compared model-based indices with observation-based indices for temperature and 

precipitation extremes (Table 2.8). The simulations results found by Sillmann and Roeckner 

(2008) are, in general, consistent with the multi-model study of Tebaldi et al. (2006). 

Sillmann and Roeckner (2008) verified that the ensemble-mean of the model-based indices 

underestimates the extreme precipitation evaluated by most of the observation-based indices 

in southern Europe. The exceptions are the consecutive wet day (CWD) index, which is well 

captured by the model, and the consecutive dry day (CDD) index that it is overestimated. In 

southern Europe, the model overestimates CDD by more than 20 days, except in the 1950s 

when the simulated CDD is closer to the observed one. However, Sillmann and Roeckner 

(2008) argue that the abrupt change in the simulated CDD is not a real effect but can be 

attributed to a changed masking of missing values in the data used in the observation-based 

index. In what concerns the future climate simulations, the CDD index is projected to increase 

significantly in regions around the Mediterranean Sea, including Portugal. The short-term 

precipitation intensity (R5D index) decreases slightly in the twenty-first century, whereas the 

magnitude of very strong precipitation events (PREC95p index) shows hardly any trend in 

Mediterranean regions. In contrast to the wet extreme precipitation events, CDD is projected 

to increase substantially in southern Europe: the longest dry period within a year is projected 

to be prolonged by 1 (1.5) months at the end of this century in B1 scenario (A1B scenario). 

Nevertheless, in Mediterranean regions, the model biases can be substantial and climate 

change shows high heterogeneity at the local scale. 



LI T E R A T U R E R E V I E W 

 137

In summary, Sillmann and Roeckner (2008) concluded that, in general, the differences 

between humid and arid climate zones of the world tend to increase under global warming. In 

southern Europe, extensive irrigation will be required because of higher temperatures, less 

precipitation, and prolonged dry spells in the future climate. These changes in climate 

extremes will have a severe impact on living conditions, water supply, and agriculture in the 

regions around the Mediterranean Sea. Accordingly, regions endangered by desertification are 

projected to grow. In particular, the Mediterranean regions will face longer drought conditions 

lasting for more than 3 months, especially in summer. 
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3. Homogenization of precipitation time series 

Precipitation is one of the most important climate variables. Accurate quantification of its 

observed variability is required for a number of purposes. Long-term series of reliable 

precipitation records are essential for climate change monitoring, general circulation models 

and regional climate models, modelling of erosion, runoff and pollutant transport, among 

other applications for ecosystem and hydrological impact modelling. 

However, high quality data seldom exist because in reality many types of non-climatic factors 

(e.g. stations relocations, changes of the surroundings, different observational and calculation 

procedures, etc.) can cause time series discontinuities which may hide the true climatic signal 

and patterns, and thus potentially bias the conclusions of climate and hydrological studies 

(e.g. Peterson et al., 1998; Tuomenvirta, 2001; Auer et al., 2005). Therefore, it is 

recommended that, besides routine quality control, the homogeneity testing of data to be 

evaluated before performing those studies (Aguilar et al., 2003). 

Several techniques have been developed for detecting inhomogeneities in time series of 

weather elements. The approaches underlying the homogenization techniques are quite 

different and typically depend on the type of element (temperature, precipitation, pressure, 

evaporation, etc.), the temporal resolution of the observations (annual, seasonal, monthly or 

sub-monthly), the availability of metadata (station history information) and the monitoring 

station network density (spatial resolution). A review of different statistical methods is 

presented by Peterson et al. (1998), and comparisons between procedures are provided by 

Ducré-Robitaille et al. (2003) and Reeves et al. (2007). 

The research developed along this thesis focus on the south of continental Portugal, which is 

one of the most vulnerable regions to desertification in Portugal (e.g., Correia, 2004; Rosário, 

2004b). For the homogenization analysis, a set of 45 long-term and 62 short-term series of 

daily precipitation were compiled. 

Before being collected, the precipitation series had already been subject to several basic 

quality-control procedures and several statistical homogeneity tests, as discussed in Section 

3.1.1. Nevertheless, we assumed that the 107 daily precipitation series could contain potential 
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inhomogeneities, as recommended by Auer et al. (2005), and thus several homogenization 

procedures were applied to all of them. Furthermore, two new homogenization approaches are 

proposed (Costa and Soares, 2006; Costa et al., 2008a). 

The homogeneity assessment of the precipitation time series was accomplished through four 

major stages. The first one aimed at the identification of errors and suspicious daily 

precipitation records, and the following stages were dedicated to homogeneity testing. The 

second stage is an absolute approach that was implemented in order to select a subset of series 

with quality data, including a set of reference series that are presumed homogeneous by the 

relative procedures. 

The third stage is a relative approach in which, besides the application of several well-

established statistical tests, a new procedure is proposed for the detection of non-climatic 

irregularities. The proposed technique is an extension of the Ellipse test (described by Allen et 

al., 1998) that takes into account the contemporaneous relationship between several candidate 

series from the same climatic area (Costa and Soares, 2006). 

Finally, in the fourth stage, a geostatistical simulation approach, using the direct sequential 

simulation algorithm (Soares, 2001), is proposed for inhomogeneities detection in 

precipitation time series. This relative technique accounts for the joint spatial and temporal 

dependence between observations, and enhances the pre-eminence of the closer stations, in 

both spatial and correlation terms (Costa et al., 2008a). 

Section 3.1 describes the study domain and the available precipitation data, plus its previous 

quality control analysis and homogenization assessment. The inhomogeneities detection 

methodology is detailed in Section 3.2, including the description of the basic quality control 

procedures developed (Section 3.2.1), the six statistical tests applied (Section 3.2.2), and the 

proposed extension of the Ellipse test (Section 3.2.3). Several issues related to the relative 

procedures used are discussed in Section 3.2.4. The proposed geostatistical simulation 

approach is detailed in Section 3.2.5. Finally, the main results from the homogenization 

analysis are presented and discussed in Section 3.3, and some conclusions are drawn. 
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3.1 Study domain and precipitation data 

There are two main reasons for the selection of the south of continental Portugal as the study 

region of this work. First, accurate long-term precipitation series with at least daily resolution 

are required to characterize precipitation extremes (Easterling et al., 1999; Klein Tank and 

Können, 2003). For a sub-monthly time scale, such high quality data was not available, at 

least to us, for the complete continental territory of Portugal. The homogenization and 

adjustment of all the obtainable climatic series is out of the scope of this work and was not 

completed due to time constrains. Second, recent studies show that this is one of the most 

vulnerable regions to desertification in continental Portugal (e.g. Correia, 2004; Rosário, 

2004b). 

The daily precipitation series analysed were compiled from the European Climate Assessment 

(ECA) dataset and the National System of Water Resources Information (SNIRH – Sistema 

Nacional de Informação de Recursos Hídricos) database12, and are available through free 

downloads from the ECA website (http://eca.knmi.nl) and the SNIRH website 

(http://snirh.inag.pt), respectively. The compiled precipitation series were downloaded during 

the first semester of 2004. 

For the homogenization analysis, the study domain is defined by the Arade, Guadiana, Mira, 

Ribeiras do Algarve and Sado basins. Despite being outside the study domain, data from 

Lisbon and Badajoz (Spain) stations were also considered. All stations with at least 30 years 

with less than 5% of observations missing were selected. Shorter series with at least 10 years 

lacking a maximum of 5% of data were also chosen, and hence the series with too many gaps 

were discarded. Using those criteria, 45 long-term and 62 shorter series of daily precipitation 

were accepted for the homogenization analysis. Data from those 107 weather stations were 

checked in order to verify the length of the series and the occurrence of gaps (Figure 3.1). 

Even though the beginning and ending of the series from the SNIRH database is highly 

variable, 44 long-term series have a common period of observation of 20 years, located in the 

1964-1983 interval. Most of the long-term series (more than 90%) cover the standard normal 

period 1961/1990, and 33% of them extend back to 1931 (Figure 3.2). 

                                                 

12 Managed by Instituto da Água (INAG). 
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Figure 3.1 – Precipitation series by years lacking a maximum of 5% of data 
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Figure 3.2 – Long-term precipitation series by years 

Long-term series have, in average, approximately 51 years of length with less than 5% of 

observations missing (Figure 3.3) and most of them cover the standard normal period 

1961/1990 without too many gaps (Figure 3.4). 
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Figure 3.3 – Distribution of long-term series by length (years lacking a maximum of 5% of data) 
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Figure 3.4 – Long-term precipitation series by years lacking a maximum of 5% of data 

Figure 3.5 shows the study domain and the geographical distribution of stations for which 

daily time series have been selected. The data are spatially representative of the study domain 

that covers approximately 25200 km2. 

Details of all 107 series are presented in Appendix I, including the station name and ID, 

altitude, location coordinates, available data periods, and series length (years lacking a 

maximum of 5% of data). 
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Figure 3.5 – Study area and stations with daily precipitation series. Station dots are scaled with 
the length (years lacking a maximum of 5% of data) of the time series. Red dots: long-term 

series. Black dots: short-term series. 

The Portuguese border and the Arade, Guadiana, Mira, Ribeiras do Algarve and Sado basins 

themes used in the maps that are presented throughout the thesis were collected from the 

"Atlas do Ambiente Digital - Instituto do Ambiente". 

3.1.1 Previous quality control analysis 

Before being collected for this study, the daily series of the ECA dataset had already been 

subject to several basic quality-control procedures and four statistical homogeneity tests: the 

Standard normal homogeneity test (SNHT) for a single break (Alexandersson, 1986), the 

Buishand range test (Buishand, 1982), the Pettit test (Pettit, 1979), and the Von Neumann 

ratio test (Von Neumann, 1941). The homogeneity tests were applied to an annual resolution 

set of variables representing important characteristics of variation at the daily scale. For 

precipitation, the testing variable used was the wet day count using 1 mm as threshold. 

Because of the sparse density of the ECA station network, absolute tests were applied rather 

than relative tests, i.e. testing a candidate station series relative to neighbouring stations' 

series. 

The ECA project used historic metadata information to find supporting evidence of changes in 

observational routines that may have triggered the irregularities detected. The ECA daily 

series were not adjusted for the inhomogeneities identified. Instead, the results of the different 

tests were grouped in an overall classification (‘useful’, ‘doubtful’, and ‘suspect’). The four 

long-term precipitation series (from Beja (666), Lisboa Geofísica (675), Tavira (681) and 
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Badajoz Talavera (709)) compiled from the ECA dataset for this study were all marked as 

‘useful’, as the four homogeneity tests did not reject the homogeneity hypothesis, at the 1% 

level. For further details see Klein Tank et al. (2002), Wijngaard (2003), Wijngaard et al. 

(2003), and the ECA project website (http://eca.knmi.nl). 

Like most long-term climate time series, the daily precipitation series from the SNIRH 

database are expected to suffer from several non-climatic factors, although some homogeneity 

testing of the annual precipitation totals has already been carried out by Nicolau (1999, 2002), 

for the period 1959/60 – 1990/91. This author performed a double-mass analysis (Kohler, 

1949), and also considered an absolute approach using three homogeneity tests: the Wald-

Wolfowitz runs test (Wald and Wolfowitz, 1943), the Wilcoxon-Mann-Whitney test 

(Wilcoxon, 1945; Mann and Whitney, 1947), and a nonparametric ranking test that was not 

specified. All of the annual precipitation series of the monitoring stations considered here 

were considered homogeneous. Nevertheless, when the daily series were compiled for this 

study (first semester of 2004), in the SNIRH website (http://snirh.inag.pt, Dados de Base) it 

was mentioned that data quality verification had not been concluded. 

In summary, the compiled series from the ECA dataset were neither adjusted or tested using 

relative procedures, and the series from the SNIRH database are expected to suffer from 

several irregularities since objective relative methods were not performed and the full length 

of each series was not analysed. 

Taking into consideration the previous discussion, we assumed that the selected 107 daily 

precipitation series could contain potential breaks, as recommended by Auer et al. (2005), and 

thus several homogenization procedures were applied to all of them. 

3.2 Methodology 

As discussed previously in the Literature review chapter (Section 2.2.3), there are a number of 

tests available for the homogenization of climate series with low temporal resolution. 

However, well-established statistical methods for homogeneity testing sub-monthly 

precipitation data are lacking (Easterling et al., 1999; Aguilar et al., 2003; Wijngaard et al., 

2003; Auer et al., 2005). Furthermore, adjusting daily and hourly data is not straightforward, 
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thus the WMO makes no recommendations regarding adjusting sub-monthly data (Aguilar et 

al., 2003). 

In order to overcome those limitations and taking into consideration the previous quality 

control analysis of the selected ECA series (see Section 3.1.1), the homogeneity assessment 

followed the hybrid approach proposed by Wijngaard et al. (2003) for the ECA dataset. 

Hence, the homogeneity procedures used as the testing variable the annual wet day count with 

1 mm as threshold, which is expected to be representative of important characteristics of 

variation at the daily scale. The results of the different procedures implemented were then 

used to develop an overall classification of the daily series. 

The homogeneity assessment of the precipitation time series was developed through four 

major stages (Figure 3.6). The first one comprises several basic quality control procedures 

that aim to identify errors and suspicious daily precipitation records. The emphasis of this 

stage was on the quality control of precipitation extremes. The second stage is dedicated to 

absolute homogeneity testing and aims to select a subset of series with quality data, including 

a set of reference series that are presumed homogeneous by relative procedures. The third 

stage is a relative approach in which, besides the application of several well-established 

statistical tests, a new procedure is proposed for the detection of non-climatic irregularities. 

Finally, in the fourth stage, a geostatistical simulation approach is proposed for 

inhomogeneities detection in precipitation time series. 

The absolute approach comprises the application of six statistical tests to the testing variable, 

at all locations: the Mann-Kendall test (Mann, 1945; Kendall, 1975), the Wald-Wolfowitz 

runs test (Wald and Wolfowitz, 1943), the Von Neumann ratio test (Von Neumann, 1941), the 

Standard normal homogeneity test (SNHT) for a single break (Alexandersson, 1986; 

Alexandersson and Moberg, 1997), the Pettit test (Pettit, 1979), and the Buishand range test 

(Buishand, 1982). 

The relative approach comprises the application of these last three homogeneity tests (which 

are capable of locating the year where a break is likely) to long-term composite reference 

series, and the application of a new procedure to the testing variable. The proposed technique 

is an extension of the Ellipse test (described by Allen et al., 1998) that takes into account the 

contemporaneous relationship between several candidate series from the same climatic area 
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by using the residuals from a Seemingly unrelated regression equations (SUR) model. The 

methodology and results from this approach are described by Costa and Soares (2006). 
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Figure 3.6 – Schematic representation of the methodology for the homogeneity assessment of the 
precipitation time series 

It is important to point out that the homogenization techniques considered were used 

iteratively by systematically dividing the tested series into smaller segments when a break was 

detected, and then performing the test on those segments. Parameter-specific characteristics of 

the inhomogeneities detected through relative testing were evaluated, namely their magnitude, 

their frequency distribution, and their temporal occurrence. 
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The geostatistical approach proposed for the detection of non-climatic irregularities (applied 

to the testing variable) uses the direct sequential simulation (DSS) algorithm (Soares, 2001) to 

determine local probability density functions at a candidate station's location, by using spatial 

and temporal neighbourhood observations. Costa et al. (2008a) describe the methodology and 

results from this relative approach. 

Section 3.2.1 overviews the basic quality control procedures, and details the quality control of 

precipitation extremes. The six statistical tests for inhomogeneities detection are described in 

Section 3.2.2, and the proposed extension of the Ellipse test is presented in Section 3.2.3. 

Section 3.2.4 discusses several issues related to the relative approach, including the selection 

of reference series and the construction of composite reference series. Finally, the 

geostatistical simulation approach proposed is described in Section 3.2.5. 

3.2.1 Basic quality control procedures 

Several basic quality control procedures were used to identify errors and suspicious daily 

precipitation records. A first set of procedures checks to eliminate gross errors and a second 

one flags questionable data. 

3.2.1.1 Gross error checking 

The aim of gross error check is to verify if the values are within acceptable range limits (e.g. 

check negative precipitation), and to perform basic time checks (e.g. check non-existent 

dates). Besides this routine quality control, several robust location and scale estimates were 

computed for outlier detection, by using all records from the time series, and by computing 

estimates for each year. 

The asymmetric pseudo-standard deviation consists of an upper and a lower pseudo-standard 

deviation. The upper (lower) pseudo-standard deviation is defined as twice the distance 

between the upper (lower) quartile and the median divided by 1.349. These can be used to 

construct an asymmetric confidence interval for outlier flagging (Lanzante, 1996). 

Other robust location and scale estimates can be computed using the biweight method, namely 

the biweight estimates of the mean and standard deviation. The biweight estimate is a 

weighted average such that weighting decreases nonlinearly (to zero) going away from the 
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centre of the distribution (Lanzante, 1996). The computation of weights uses the median-

absolute-deviation (MAD), which is the median of the absolute values of the deviations of the 

sample values from the median. 

3.2.1.2 Flagging of suspicious records 

Several criteria (data outlying pre-fixed thresholds and graphical analysis) were used to flag 

the daily precipitation records with the following classification scheme: (1) ‘useful’, (2) 

‘doubtful’, (3) ‘suspect’, and (4) ‘erroneous’. It should be noted that flagging a record as (2) 

or (3) does not necessarily imply erroneous data as it can very well be because of extreme 

weather conditions. 

The first criterion was the following: records greater than the 99th percentile were flagged as 

(2) ‘doubtful’; records greater than 100 mm were flagged as (3) ‘suspect’; and all others as (1) 

‘useful’. It is important to point out that the smallest 99th percentile value is equal to 20 mm 

when considering all 107 precipitation series. The second criterion used was a subjective 

evaluation of data previously flagged as (3) ‘suspect’. If at least two monitoring stations had 

daily precipitation records greater than 100 mm on the same day, or within a one day range, 

their flag was set to (2) ‘doubtful’. 

The final flagging classification was achieved after plotting the data against time. When a 

peak in the graph seemed suspicious, even if that value was previously classified as (1) 

‘useful’ or (2) ‘suspect’, a closer look was taken by plotting the data against time together 

with highly correlated stations (Pearson’s correlation coefficient greater than 0.70 or highly 

significant Spearman rank-order correlation coefficient) for the three month period centred in 

the suspicious day. After a subjective analysis of all the graphs, several records were 

reclassified. Afterwards, the Portuguese Institute for Water (INAG – Instituto da Água), 

which is responsible for the SNIRH database, was contacted in order to clarify if data flagged 

as (4) ‘erroneous’ were outliers or a result of extreme weather phenomena. 

The last quality control procedure used was a ‘flat line’ check, which identifies data of the 

same value for at least three (Feng et al. (2004) considered seven) consecutive days (not 

applied to zero precipitation data). For those detected records, the first occurrence was flagged 

as (0) ‘useful’, and the following records as (1) ‘suspect’. All other records were flagged as 

(0) ‘useful’. 
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3.2.2 Homogeneity tests 

3.2.2.1 Mann-Kendall test 

The nonparametric Mann-Kendall test (Mann, 1945; Kendall, 1975) is traditionally used to 

test randomness against (monotonic) trend and requires data to be serially independent. The 

null hypothesis is that the data are independent, identically distributed random quantities and 

the alternative is that a stochastic trend exists. 

The Mann-Kendall test statistic S is defined as follows: 
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Under the null hypothesis, the S statistic is approximately normally distributed when n ≥ 8, 

and the mean and variance, corrected for ties, are given by 
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where i denotes the multiplicity of tied values. 

Therefore, provided that n ≥ 8, the critical regions and p-values of the Mann-Kendall test 

statistic (S) can be approximately determined using the standardized S statistic and the 

appropriate quantiles of the standard normal distribution, for a given significance level α. 

For the one-tailed test, positive and negative S values indicate upward and downward trends, 

respectively. 
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3.2.2.2 Wald-Wolfowitz one-sample runs test 

The Wald-Wolfowitz runs test is a nonparametric test for randomness (Wald and Wolfowitz, 

1943), i.e. tests the assumption that the data collected constitute a random sample so that each 

observation or measurement is drawn randomly and independently from its population. 

The null hypothesis is that the process that generates the set of numerical data is random (with 

respect to the median) through time. For the two-tailed test, the alternative hypothesis is that 

the data set is not randomly distributed. 

A sequence is formed by assigning one of two symbols to each observation, depending on 

whether its measurement falls above or below the median: 
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where the xj are sequential data values; n is the length of the data set; S is a symbol denoting a 

success and F denotes a failure. If n1 and n2 are the number of successes and failures of series, 

respectively, then n1+n2 equals n. 

A run is defined as a consecutive series of similar symbols that are bounded by symbols of a 

different type or by beginning or ending of the sequence. The test statistic U is the total 

number of runs present in the data. 

For n1<20 or n2<20, critical values for the U statistic are given by the Wald-Wolfowitz U 

table (e.g. Berenson and Levine, 1996). Under the null hypothesis, the U statistic is 

approximately normally distributed when n ≥ 40, and the mean and variance are given by 
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Therefore, provided that n ≥ 40, the critical regions and p-values of the Wald-Wolfowitz test 

statistic (U) can be approximately determined using the standardized U statistic and the 

quantiles of the standard normal distribution, for a given significance level α. 
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3.2.2.3 Von Neumann ratio test 

Von Neumann (1941) proposed a statistic defined by: 

(3.7) 
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where n is the length of the data set; the xj are sequential data values and x  is the average 

value. 

The Von Neumann ratio test is distribution free and the null hypothesis is that the data are 

independent, identically distributed random quantities and the alternative is that the time 

series is not randomly distributed. Under the null hypothesis of a constant mean, the expected 

value of the test statistic is equal to 2 (Buishand, 1982). Critical values for the N statistic can 

be found in Wijngaard et al. (2003). 

3.2.2.4 Standard normal homogeneity test for a single break 

The Standard normal homogeneity test (SNHT) for a single break is a parametric test 

developed by Alexandersson (1986) that is capable of locating the period (year) where a break 

is likely. The null hypothesis is that the data are independent, identically normally distributed 

random quantities and the alternative is that a step-wise shift in the mean (a break) is present. 

At any position k of the series, the T(k) statistic compares the mean of the first k years of the 

record with that of the last n–k years: 
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where n is the length of the data set; 1z  and 2z  are defined as 
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where, the xj are sequential data values; x  is the mean and s the standard deviation of the 

series to be tested. 

If a break is likely to be located at the year K, then T(k) reaches a maximum near the year 

k=K, thus the test statistic is 

(3.11) { }
nk1

0 )k(TmaxT
<≤

=  

If T0 is larger than a certain critical level the series should be classified as non-homogeneous. 

For 1% and 5% significance levels, critical values for the T0 statistic can be found in 

Wijngaard et al. (2003). 

3.2.2.5 Pettit test 

Pettit (1979) developed a nonparametric test that is capable of locating the period (month or 

year) where a break is likely. The null hypothesis is that the data are independent, identically 

distributed random quantities and the alternative is that a step-wise shift in the mean (a break) 

is present. 

This test is based on the ranks of the elements of a series rather than on the values themselves. 

At any position k of the series, the Xk statistic is defined as 

(3.12) n,...,1k,)1n(kR2X
k

1i
ik =+−= ∑

=

 

where Ri is the rank of the ith observation when the values x1, x2, …, xn in the series are 

arranged in ascending order. 

If a break is likely to be located at the year E, then Xk is maximal or minimal near the year 

k=E, thus the test statistic is 

(3.13) { }
nk1

kE XmaxX
≤≤

=  

If XE is larger than a certain critical level the series should be classified as non-homogeneous. 

For 1% and 5% significance levels, critical values based on simulations for the XE statistic can 

be found in Wijngaard et al. (2003). The statistical significance of the change point can also 
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be assessed by comparing the calculated value of XE with its theoretical value, at probability 

level α, given as (Pettit, 1979): 

(3.14) ( )( )[ ] 2/123
,E 6/nnlnX +α−=α  

where n is the length of the data set. 

Taking into consideration the previous quality control analysis of the selected ECA series for 

this study (see Section 3.1.1), the table of critical values given by Wijngaard et al. (2003) was 

preferred. 

3.2.2.6 Buishand range test 

The Buishand range test (Buishand, 1982) is a parametric test and assumes, under the null 

hypothesis, that the values of the testing variable are independent and identically normally 

distributed. Under the alternative hypothesis, it assumes that a step-wise shift in the mean (a 

break) is present. 

The test is based on the adjusted partial sums or cumulative deviations from the mean: 
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where, the xj are sequential data values; x  is the mean of the series to be tested, and n is the 

length of the data set. 

For a homogeneous series, one may expect that the *
kS  values fluctuate around zero since 

there is no systematic pattern in the deviations of the records from their average value. If a 

break is likely to be located at the year K, then *
kS  reaches a maximum (negative shift) or a 

minimum (positive shift) near the year k=K. The test statistic is defined as n/R , where 

(3.16) ( ) sSminSmaxR *
knk0

*
knk0 ≤≤≤≤
−=  

and s is the standard deviation. 

For 1% and 5% significance levels, Wijngaard et al. (2003) extend the table of critical values 

for the test given by Buishand (1982). 
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3.2.3 Proposed extension of the Ellipse test 

Allen et al. (1998) describe a method of cumulative residuals (Ellipse test) that tests if a 

weather data set from a monitoring station is homogeneous using the cumulative residuals 

from the linear regression between the candidate series (dependent variable) and data from a 

neighbouring station (independent variable), or the average observations of several 

surrounding stations inside the same climatic region. We propose an extension of this method 

that takes into account the contemporaneous relationship between several candidate series 

from the same climatic area. Instead of using the residuals from a linear regression model, the 

proposed technique uses the residuals from a Seemingly unrelated regression equations 

(SUR) model. 

Zellner (1962) proposed the SUR approach for situations where at least two equations are 

being estimated and the error terms are contemporaneously but not serially correlated. In a 

general specification of M seemingly unrelated regression equations the ith equation is given 

by 

(3.17) ,...,M1i,eβXy iiii =+=  

where yi is a vector of dimension (T x 1) containing all the observations on the ith dependent 

variable (T observations of the ith candidate series); Xi is a matrix of dimension (T x Ki) 

containing all the observations and all the explanatory variables (neighbouring stations' series) 

including the constant term; βi is a vector, of dimension (Ki x 1), of unknown coefficients to 

be estimated; and ei is a vector of dimension (T x 1) containing the error terms for all 

observations. 

Note that each equation involves Ki regressors, meaning that each equation does not have to 

have the same number of explanatory variables. However, if all equations have identical 

explanatory variables, then generalized least squares is equivalent to equation by equation 

ordinary least squares (Greene 2003, p. 343). Thus, for those situations the proposed approach 

is equivalent to the method of cumulative residuals (Ellipse test) described by Allen et al. 

(1998). 

Combining all equations into one model yields 
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Or, alternatively, 

(3.19) y = Xβ + e 

where the definitions of y, X, β and e are obvious from Equation (3.18) and their dimensions 

are, respectively, (MT x 1), (MT x K), (K x 1), and (MT x 1), with ∑=
=

M

1i iKK . 

Given that eit is the error for the ith equation in the tth time period, the assumption of 

contemporaneous disturbance correlation, but no correlation over time, implies that the 

covariance matrix for the complete error vector can be written as 

(3.20) W = E[ee’] = Σ ⊗ IT 

where 
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and ⊗ denotes the Kronecker product, indicating that each element of Σ is multiplied by an 

identity matrix. The matrix Σ is symmetric, so that σij = σji and it is non-singular, and thus has 

an inverse. 

The generalized least squares estimator of β, typically denoted by β̂ , is the best linear 

unbiased estimator (Griffiths et al. 1993, p. 570), but assumes that Σ is known. In practice, the 

variances and covariances are usually unknown and must be estimated, thus the feasible 

generalized least squares estimator β̂̂  is generally used (Greene 2003, p. 344). 

To compute a feasible generalized least squares estimator, Σ must be replaced by a consistent 

estimator (Ruud 2000, p.704). To estimate the σij, each equation is first estimated by ordinary 
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least squares in order to obtain the least squares residuals iê . Consistent estimates of the 

variances and covariances are then given by 

(3.22) ∑
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If we define Σ̂  as the matrix Σ with the unknown σij replaced by ijσ̂ , then the feasible 

generalized least squares estimator for β can be written as 

(3.23) ( )[ ] ( )yIˆ'XXIˆ'Xˆ̂
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The proposed procedure (SUR+Ellipse test) uses the cumulative residuals from such a SUR 

model to identify inhomogeneities in several candidate series from the same climatic area. A 

candidate series can be considered homogeneous if the cumulative residuals are not biased. 

The bias hypothesis can be tested using an ellipse defining the confidence limits (Allen et al., 

1998). For each equation i (ith candidate series), the axes of the ellipse are defined by 

(3.24) 
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where zp is the standard normal variate for the desired probability p (confidence level), and Se,i 

is the standard deviation of the residuals of the ith equation. Thus, the parametric equation of 

the ith ellipse is 

(3.25) 
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with θ [rad] varying from 0 to 2π.  

Plotting the cumulative residuals against time, using the time scale (interval) of the variable 

under analysis, the accumulated residual curve is obtained. If all the cumulative residuals lie 

inside the ellipse then the hypothesis of homogeneity is not rejected for the significance level 

considered. This test is then capable of locating the period (year) where a break is likely to 

occur. 
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3.2.4 Relative approach issues 

As pointed out before in the Literature review chapter, if an absolute test detects a break in a 

station’s time series it may indicate an inhomogeneity or it may simply indicate an abrupt 

change in the regional climate. Historic metadata support is then essential for evaluating the 

breaks detected. Unfortunately, these metadata was not available, at least to us, thus the 

results from the absolute approach were used to provide a qualitative classification of the 

series to be used in a relative approach. 

In order to account for regional climate change and to isolate the effects of station 

irregularities, many techniques use data from nearby stations (reference series). Searching for 

breakpoints or artificial trends in a composite reference series (ratio for precipitation) is a 

standard methodology in the detection of non-climatic homogeneities. However, such a 

relative approach for the homogenization of all series could not be used, as it would require an 

iterative procedure in which all stations in the data set were seen consecutively as candidates 

and references. Consequently, with the objective of finding, at least, a subset of high quality 

long-term series, the results from the absolute approach were used to determine which series 

were more appropriate to be selected as reference (presumed homogeneous). Short-term series 

were not tested through relative procedures, but the absolute tests results were used to provide 

a global quality classification. The next section details the candidate and reference series 

selection, and the criteria used to classify the short-term series. Section 3.2.4.2 describes the 

construction of composite reference series. 

3.2.4.1 Reference series selection 

The results from the absolute approach were used to determine which long-term series were 

more appropriate to be selected as references, which presumably are homogeneous. 

Nevertheless, an iterative procedure in which several stations in the data set were seen 

consecutively as candidates and references was used. 

The absolute approach comprised the application of six statistical tests (see Section 3.2.2) to 

the testing variable of each precipitation series. Their outcomes were then grouped together, 

and the criteria to determine which long-term series were more appropriate to be selected as 

references relied on the number of tests rejecting the homogeneity hypothesis at the 5% 

significance level (Table 3.1). 
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Table 3.1 – Criteria for long-term and short-term series classification for relative testing and for 
global quality evaluation, respectively 

Number of tests that rejected 
the homogeneity hypothesis (5% 

signif.) 

Long-term series classification 
for relative testing 

Short-term series global 
quality classification 

0 Reference Useful 

1 Candidate Doubtful 

2 or more Exclude Doubtful 

Considering those criteria, the selected reference series were used to test the existence of 

inhomogeneities in the candidate series. Additionally, the selected reference series were also 

tested through an iterative procedure in which they were seen consecutively as candidates and 

references. Long-term series for which two or more absolute tests rejected the homogeneity 

hypothesis were not tested using the relative approach. 

The established criteria seem reasonable since Wijngaard et al. (2003) defined a similar 

classification, although with a different purpose, for the ECA series. The outcomes of four 

absolute tests (applied to the ECA testing variables) were grouped together and a 

classification of the series was made depending on the number of tests rejecting the null 

hypothesis at the 1% level: ‘useful’ if one or zero tests rejected the null hypothesis, ‘doubtful’ 

if two tests rejected the null hypothesis, and ‘suspect’ if three or four tests rejected the null 

hypothesis. 

In order to select references for a specific candidate series the most common approach was 

used (e.g. Tayanç et al., 1998; Boissonnade et al., 2002), i.e. Pearson correlation coefficients 

between the candidate and the eligible reference series were computed and the two highest 

correlated ones (>0.70) were taken as reference. 

Short-term series were not tested through relative procedures, but the absolute tests results 

were used to provide a global quality evaluation by classifying them as ‘useful’ or ‘doubtful’. 

Once again, the criteria used relied on the number tests rejecting the homogeneity hypothesis 

at a 5% significance level (Table 3.1). Furthermore, short-term series classified as 'useful' 

were used in the homogeneity assessment performed through the proposed geostatistical 

simulation approach – see Section 3.2.5 for the methodology and Section 3.3.4 for the 

discussion of the results from this approach. 
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3.2.4.2 Construction of composite reference series 

Long-term composite (ratio) reference series were tested using the Standard normal 

homogeneity test (SNHT) for a single break (Alexandersson, 1986; Alexandersson and 

Moberg, 1997), the Pettit test (Pettit, 1979), and the Buishand range test (Buishand, 1982). 

The ratios used are defined as (Alexandersson and Moberg, 1997): 
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where: Y denotes the candidate series; Yi is a specific value of the testing variable at year i; Xj 

denotes one of the reference neighbouring stations (the jth of a total of k); Xji is a specific 

value from that site; Y  and jX  are mean values of Y and Xj, respectively, and were computed 

for one common time period for all series (otherwise, Alexandersson and Moberg (1997) 

verified that the size of non-homogeneities may be underestimated or missed by the test); and, 

finally, ρj is the correlation coefficient between the candidate site and a surrounding station j 

(j=1,…, k) and it was estimated from one common time period for all series. 

The values of the denominator in Equation (3.26) (expressed within brackets) are called 

reference values since they are intended to be reasonable and stable estimates for the 

candidate series using a set of neighbouring reference stations. If the candidate has no 

inhomogeneities then the resulting ratio series will oscillate around 1. 

Finally, the composite (ratio) reference series are defined as the standardized series: 

(3.27) ( ) Qii QQZ σ−=  

and were used for homogeneity testing with the Standard normal homogeneity test (SNHT) 

for a single break (Section 3.2.2.4), the Pettit test (Section 3.2.2.5), and the Buishand range 

test (Section 3.2.2.6). 

3.2.5 Proposed geostatistical simulation approach 

Most of the statistical procedures, including nonparametric tests, require serially independent 

data. When sample data are serially correlated, the presence of serial correlation in time series 
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will affect the ability of the tests to correctly assess the significance of inhomogeneities 

detection. However, it is a standard procedure to relax this hypothesis for annual data. The 

autocorrelation assumption, while acceptable for some annual climate series, is not realistic 

for daily or monthly series, where there is much empirical evidence of autocorrelation 

(Reeves et al., 2007). 

Relative methods using composite reference series are traditional approaches for the 

homogenization of climate records. Composite reference series are computed as a weighted 

average of data from neighbouring stations by using some measure of statistical similarity 

(usually the correlation coefficient or an inverse function of the distance) between them 

(Peterson et al., 1998). A combined use of those measures was proposed by Romero et al. 

(1998) in order to increase the contribution of the closer stations, both in spatial and 

correlation terms. 

Considering the previous discussion, the motivation to use a geostatistical approach for the 

inhomogeneities detection in climate series was that these procedures account for the joint 

spatial and temporal dependence between observations, and enhance the pre-eminence of the 

closer stations, both in spatial and correlation terms. 

Sequential simulation is a widely used tool for obtaining a set of equiprobable simulated 

realizations of variables from natural phenomena, honouring their spatial distribution and 

uncertainty (e.g. Goovaerts 1997, Ch. 8). While sequential indicator simulation (SIS) and 

sequential Gaussian simulation (SGS) require the transformation of original variables, direct 

sequential simulation (DSS) has been proposed (Journel, 1994) for simulating directly in the 

original data space and does not rely on multi-Gaussian assumptions. Journel (1994) showed 

that for the sequential simulation algorithm to reproduce a specific covariance model it 

suffices that simulated values are drawn from local distributions centred at the simple kriging 

estimates with a variance corresponding to the simple kriging estimation variance. This result 

guarantees that the spatial covariance of the original variable is reproduced but not the 

histogram. To overcome this limitation, Soares (2001) proposed a DSS algorithm that uses the 

local simple kriging estimates of the mean and variance, not to define the local cumulative 

distribution function (cdf) but to sample from the global cdf. 

For the detection of inhomogeneities, we propose the DSS algorithm introduced by Soares 

(2001) to calculate the local probability density function (pdf) at a candidate station's location, 
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using spatial and temporal observations from nearby reference stations, without taking into 

account the candidate's data. Afterwards, the local pdf from each instant in time (e.g., year) is 

used to verify the existence of irregularities: a breakpoint is identified whenever the interval 

of a specified probability p (e.g. 0.95) centred in the local pdf does not contain the observed 

(real) value of the candidate station. In practice, the local pdfs are provided by the histograms 

of simulated maps, thus this rule implies that if the observed (real) value lies below or above 

the pre-defined percentiles of the histogram of a given instant in time then it is not considered 

as homogeneous. If irregularities are detected in a candidate series, the time series can be 

adjusted by replacing the inhomogeneous records with the mean, or median, of the pdf(s) 

calculated at the candidate station's location for the inhomogeneous period(s). 

The DSS algorithm was preferred over SGS, not only because it succeeds in reproducing the 

variogram and histogram of a continuous variable, but also because it does not require any 

transformation of the original variables. The SGS guarantees the reproduction of the 

variogram of the Gaussian variable, but it is not assured that the variogram is reproduced after 

the back-transformation of the original variable, especially when the distribution of the 

original variable is very asymmetric. 

The methodology of the geostatistical simulation approach can be summarized as follows. 

Let {z(uα, ti): α=0, 1,…,n−1; i=1,…,T} be the set of climate data measured at n locations uα 

and in ti time instants (e.g., years). The n monitoring stations do not have to be all informed at 

the same T time instants (i.e., a number of z-values can be missing). Let {z(u0, ti): i=1,…,T} 

denote the candidate time series. The set of climate observations correspond to outcome 

values (realizations) of a spatiotemporal random variable Z(u, t) that can take a series of 

values at any location in space u and instant in time t according to a probability distribution. 

Using the set of time series corresponding to the reference stations, 

{z(uα, ti): α=1,…,n−1; i=1,…,T}, 

the DSS algorithm is applied in order to obtain a set of m equally probable realizations of 

Z(u,t) at the candidate station's location and all instants in time: {zs(u0, ti): s=1,…,m; 

t=1,…,T}. For a given instant in time t0, the set of simulated values {zs(u0, t0): s=1,…,m} 

defines the local histogram of the candidate station for that instant. The corresponding 
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empirical cumulative distribution function gives the estimated probability that the variable Z 

at location u0 in space and instant t0 in time is no greater than any given threshold z: 

F*(u0, t0; z)=Prob*{Z(u0, t0) ≤ z}. 

An inhomogeneous record z(u0, t0) is identified if the interval of a specified probability p (e.g. 

0.95), centred in the estimated local pdf of the candidate station for the instant t0, does not 

contain the observed z(u0, t0) value: 
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3.2.5.1 Implementation issues 

The inhomogeneities detection procedures used in this study followed the hybrid approach 

proposed by Wijngaard et al. (2003) for the ECA dataset, and used as the testing variable the 

annual wet day count with 1 mm as threshold. For illustration purposes, the geostatistical 

simulation approach was applied to the testing variable data from 4 candidate stations using 

data from 62 surrounding stations (reference stations, presumed homogeneous) located in the 

southern region of Portugal. As with other relative homogeneity testing approaches, reference 

stations' data are used to account for regional climate changes and to isolate the effects of 

station irregularities (Peterson et al., 1998). 

Techniques that use series from surrounding stations, some times run the test once, relying the 

reference to be homogeneous, or engage in an iterative procedure in which all the stations in 

the data set are seen consecutively as candidates and references (Aguilar et al., 2003). 

Following this methodology, the local pdfs of each year of the candidate series, derived from 

50 simulated maps in a 1 km x 1 km grid, were computed using data not only from the 62 

references but also from the other 3 candidate stations. The analysed period was 1980-2001. 

The geostatistical simulations used an isotropic spherical variogram model that was fitted 

using the testing variable data from the complete set of 66 monitoring stations: the estimated 

spatial range was equal to 72 km, and the temporal one was equal to 1.8 years. 
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3.3 Results and discussion 

The data analysis for this study was generated through specific programs developed using 

SAS software macros, SAS/STAT®, SAS/ETS® and SAS/GRAPH® software, of the SAS 

System13 for Windows, Version 8. The geostatistical simulation approach, in particular the 

DSS algorithm, was implemented using geoMS© – Geostatistical Modelling Software14. 

3.3.1 Basic quality control analysis 

This section discusses the main results from the quality control procedures used. The 

emphasis of this stage was on the quality control of precipitation extremes, thus the objective 

was the identification of errors and suspicious daily precipitation records. 

Routine quality control procedures revealed that all precipitation records were non-negative 

but many series had non-existent dates, which were properly corrected and missing values 

were assigned to the variable for those dates. 

Several robust location and scale estimates were computed for outlier detection by using all 

records from the daily time series and by computing estimates for each year. However, those 

estimates were inconclusive, and identical for both approaches, because the daily precipitation 

distributions are much skewed. 

The upper asymmetric pseudo-standard deviation was computed for all 107 daily precipitation 

series, but it was inconclusive since the median is equal to zero for all series and the third 

quartile is different from zero for 11 series only, thus the interquartile range is always equal to 

zero except for those 11 series. 

The biweight estimates of the mean and standard deviation could not be computed because 

the MAD (median-absolute-deviation) is equal to zero for all daily precipitation series and it 

appears in the weights denominator of those estimates; similarly, Feng et al. (2004) applied 

this procedure for temperature data only. 

                                                 

13 SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. In the USA and other countries ® indicates USA registration. 
14 geoMS© – Geostatistical Modelling Software was developed by Centro de Modelização de 
Reservatórios Petrolíferos (CMRP). Copyright CMRP-IST 2000. 
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Robust alternatives to MAD are the Sn and Qn standard deviations (Rousseeuw and Croux, 

1993). The Sn-standard-deviation is equal to zero for all daily precipitation series, and the Qn-

standard-deviation is approximately equal to 0.22 mm for all series, indicating that the centres 

of the distributions have low variability. 

The next set of procedures aimed to identify questionable data by flagging the daily 

precipitation records with the following classification scheme: (1) ‘useful’, (2) ‘doubtful’, (3) 

‘suspect’, and (4) ‘erroneous’. The first criterion relied on data outlying pre-fixed thresholds: 

records greater than the 99th percentile were flagged as (2); records greater than 100 mm were 

flagged as (3); and all others as (1). Using this criterion, 44% from the whole 107 series under 

analysis had records flagged as (3), where 25 of them were long-term series and the other 22 

were short-term series. Not surprisingly, the long-term series had an average number of 

records flagged as (3) approximately equal to 5, and for the short-term ones that average was 

approximately 3. The total number of records flagged as (3) ‘suspect’ was equal to 188. 

The second criterion used was a subjective evaluation of data previously flagged as (3) 

‘suspect’. If at least two monitoring stations had daily precipitation records greater than 100 

mm on the same day, or within a one day range, their flag was set to (2) ‘doubtful’. As a 

result, the number of records flagged as (3) ‘suspect’ dropped to 52 and the number of series 

to 22 (16 long-term and 6 short-term). 

The third criterion relied on graphical analysis. All 107 series were plotted against time, and 

when a peak in the graph seemed suspicious, even if that value was previously classified as 

(1) ‘useful’ or (2) ‘suspect’, a closer look was taken by plotting the data against time together 

with highly correlated stations for the three month period centred in the suspicious day (e.g. 

Figure 3.7). 
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Figure 3.7 – Daily precipitation distribution from September to December 1989 at São Barnabé 
(29I.01) and Álamo (28K.02) 

After a subjective analysis of all the graphs (over 500), almost all the records previously 

flagged as (3) ‘suspect’ were set to (2) ‘doubtful’, and four values previously flagged as (2) 

were reclassified as (3). Consequently, the number of records flagged as (3) dropped to 7 

(corresponding to 3 long-term and 1 short-term series). Conversely, for Alcoutim (29M.01) 

station the series did not seem to be homogeneous for the period 1954-1959 (Figure 3.8) and 

therefore all the values of those years were flagged as (3) ‘suspect’. 

  

Figure 3.8 – Daily precipitation distribution at Alcoutim (29M.01) 

Moreover, four records were reclassified as (4) ‘erroneous’ (Table 3.2), as they refer to daily 

precipitation observations greater than 190 mm and the respective peaks in the graphs seemed 

suspicious (e.g. Figure 3.9 and Figure 3.10). Afterwards, with the purpose of establishing the 

final classification, the Portuguese Institute for Water (INAG) was contacted in order to 

clarify if those records were really erroneous. In their reply they explained that the 192.5 mm 
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precipitation recorded at São Manços (23K.01) in 31/01/1996 referred to the accumulated 

precipitation from 07/01/1996 to 31/01/1996 (Figure 3.9), and therefore that observation 

should be set to missing in the daily series. They also informed that the 226 mm recorded at 

Relíquias (27G.01) in 10/09/1949 was correct, thus it was flagged as (1) ‘useful’. 

Table 3.2 – Daily precipitation records flagged as (4) ‘erroneous’ after three criteria (data 
outlying pre-fixed thresholds, subjective evaluation, and graphical analysis) 

Station ID Station name Length Period Daily precipitation (mm) 

23K.01 São Manços Long-term 31/01/1996 192.5 

27G.01 Relíquias Long-term 10/09/1949 226.0 

30F.01 Monchique Long-term 25/10/1997 274.7 

29F.01 Cimalhas Short-term 06/11/1997 200.0 

 

Figure 3.9 – Daily precipitation distribution from January to March 1996 at São Manços 
(23K.01) and Viana do Alentejo (44I.01) 

The record of 274.7 mm in 25/10/1997 at Monchique (30F.01) was flagged as (1) ‘useful’ 

(Figure 3.10), since the available metadata provided by INAG indicate that it is a correct 

record. Moreover, INAG pointed out that Monchique (30F.01) holds the highest national 

record of 24 hours accumulated precipitation using a recording raingauge, which is equal to 

291.6 mm in 26/10/1997 (the observations at Monchique from the SNIRH database refer to 

accumulative precipitation gauges). Finally, the record of 200 mm in 06/11/1997 at Cimalhas 

(29F.01) was also flagged as (1) ‘useful’ since the available metadata provided by INAG 

indicate that it is a conceivable record. 
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Figure 3.10 – Daily precipitation distribution from September to December 1997 at Monchique 
(30F.01) and Barragem da Bravura (30E.03) 

The last quality control procedure was a ‘flat line’ check, which identifies data of the same 

value for at least three (Feng et al. (2004) considered seven) consecutive days (not applied to 

zero precipitation data). For those detected records, the first occurrence was flagged as (0) 

‘useful’, and the following records as (1) ‘suspect’. All other records were flagged as (0) 

‘useful’. 

Almost half (49%) of the long-term series and 19% of the short-term ones were flagged with 

‘suspect’ records using this methodology. The average number of runs (blocks of three or four 

consecutive days having the same value) per station was equal to two. The flagged 

precipitation values range from 0.1 mm to 5 mm and the most common values were 0.1 mm 

and 0.2 mm. This seems to indicate that if those flagged values are erroneous they might have 

been caused by measurement errors (i.e. how precisely very low amounts of precipitation are 

measured) rather than by other types of errors (e.g., editing). 

Since the flagged values are very small and there are in average only four observations 

flagged per series, they might be considered useful if the aim of the study is to analyse 

extreme precipitation values, even though there were a significant number of series (32%) 

with data flagged as ‘suspect’. 
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3.3.2 Absolute testing 

The absolute testing stage comprises the application, at all 107 locations, of six statistical tests 

(see Section 3.2.2) to the testing variable, which is defined as the annual number of days with 

precipitation amounts above or equal to 1 mm. The results from this homogeneity testing 

stage are detailed in Appendix II. 

Two of the homogeneity tests applied are not distribution free, namely the SNHT and the 

Buishand range test, and assume that data are independent, identically normally distributed 

random quantities. Moreover, the remaining nonparametric tests applied also require serially 

independent data. For those reasons, generalized Durbin-Watson autocorrelation tests and 

four normality tests were applied to the testing series at all stations. 

The Durbin–Watson test (Durbin and Watson, 1950, 1951) is a widely used method of testing 

for autocorrelation. The generalized Durbin–Watson statistics for 1st, 2nd and 3rd order 

autocorrelation were computed (for the mathematical description refer to SAS Institute 

(1999a, p. 354-358)), and conclusions were drawn at the 5% level. The generalized Durbin-

Watson tests revealed 1st–order autocorrelation for almost 19% of the series (16 long-term and 

4 short-term), and 2nd–order for four series only. None of the testing series had significant 3rd–

order autocorrelation. 

The four normality tests applied were the Shapiro–Wilk (Shapiro and Wilk, 1965), the 

Kolmogorov–Smirnov (Kolmogorov, 1933; Smirnov, 1939), the Cramér–von Mises (Cramér, 

1928; Von Mises, 1931), and the Anderson–Darling (Anderson and Darling, 1952, 1954) 

tests. The last three are goodness-of-fit tests based on the empirical distribution function. For 

details on the statistical computation of the normality tests refer to SAS Institute (1999b, p. 

1397-1401). In view of the results from those four normality tests at the 5% level, over 80% 

of the testing series (36 long-term and 50 short-term) were considered as Gaussian by all of 

them. On the other hand, the four tests rejected the normality hypothesis for 7.5% of the series 

(2 long-term and 6 short-term). Taking into consideration these results, we decided to proceed 

with the homogeneity tests. Furthermore, note that it is a standard procedure to relax those 

assumptions for annual data. 

Approximately 60% of the 107 tested series were considered homogeneous (at the 5% level) 

by the six statistical tests, and only one of the six tests rejected the null hypothesis for 
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approximately 22% of the series. Thus, at least two tests rejected the homogeneity hypothesis 

for the remaining 20 stations. 

Taking into consideration the length of the series (Figure 3.11 and Figure 3.12), 17 long-term 

(stations with at least 30 observation years, 1932-2000) and 47 short-term (stations with at 

least 10 observation years, 1956-2001) series were considered homogeneous by all tests. 
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Figure 3.11 – Distribution of long-term and short-term series by number of tests rejecting the 
homogeneity hypothesis (5% signif). The six tests were applied to the annual number of wet days 

(threshold 1 mm). 

 

Figure 3.12 – Results from the absolute testing approach. Station dots are scaled with the 
number of tests that rejected the homogeneity hypothesis at the 5% significance level. The six 
tests were applied to the annual number of wet days (threshold 1 mm). Left: long-term series. 

Right: short-term series. 
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The outcomes from the six tests were then grouped together, and a classification for the long-

term (Table 3.3) and short-term (Table 3.4) series was established relying on the number of 

tests rejecting the homogeneity hypothesis at the 5% significance level (see Section 3.2.4 for 

methodological details). 

Table 3.3 – Distribution of long-term series by number of tests rejecting the homogeneity 
hypothesis at the 5% significance level, and respective classification for relative testing. The six 

tests were applied to the annual number of wet days (threshold 1 mm). 

Number of tests that rejected the 
homogeneity hypothesis (5% signif.) Number of long-term series Classification for relative 

testing 

0 17 Reference 

1 11 Candidate 

2 6 

3 3 

4 4 

5 3 

6 1 

Exclude 

Approximately 38% of the long-term series were considered appropriate to be selected as 

reference, and 24% as candidate. Thus, the remaining 38% were excluded from the relative 

testing analysis. 

Table 3.4 – Distribution of short-term series by number of tests rejecting the homogeneity 
hypothesis at the 5% significance level, and respective global quality evaluation. The six tests 

were applied to the annual number of wet days (threshold 1 mm). 

Number of tests that rejected the 
homogeneity hypothesis (5% signif.) 

Number of short-term 
series 

Global quality 
classification 

0 47 Useful 

1 12 

2 1 

3 1 

4 1 

5 0 

6 0 

Doubtful 
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Not surprisingly, approximately 76% of the short-term series (stations with at least 10 

observation years, 1956-2001) were considered homogeneous (at the 5% level) by the six 

statistical tests, and thus globally evaluated as ‘useful’. 

Finally, to illustrate the homogenization analysis performed, the results of the six 

homogeneity tests applied to the annual number of wet days (threshold 1 mm) of two log-term 

series are discussed. The first one is the series from Beja (666, from the ECA dataset) and the 

other one is from Aljezur (30E.01, from the SNIRH database), which were both classified as 

‘candidate’ for relative testing purposes. 

3.3.2.1 Illustration: results of Beja station 

For the testing series from Beja (666), the Wald-Wolfowitz and the Mann-Kendall test 

considered the series homogeneous, but conversely the Von Neumann ratio test rejected the 

null hypothesis, at the 5% level, for the period 1941-1990 (Table 3.5). 

Table 3.5 – Absolute tests results for Beja (666) at the 5% level for the Wald-Wolfowitz two-
tailed test based on large sample approximation, the Mann-Kendall one-tailed test based on 

large sample approximation, and the Von Neumann ratio test. The three tests were applied to 
the annual number of wet days (threshold 1 mm). 

Wald-Wolfowitz Mann-Kendall Von Neumann 
Period Standardized 

U statistic Result Standardized 
S statistic Result N statistic Result 

1941–1999 3.75 Homog. 152.92 Homog.  

1941–1990 1.53 Reject 

1950–1999 1.73 Homog. 

1941–1960 1.00 Reject 

1961–1980 2.04 Homog. 

1980–1999 

  

1.57 Homog. 

Note that the precipitation series from Beja (666) was marked as ‘useful’ in the ECA dataset 

(see Section 3.1.1), since none of the four tests considered by the ECA project, including the 

Von Neumann ratio test, rejected the homogeneity hypothesis at the 1% level. 

For Beja (666), the Buishand test statistic was equal to 0.97 for the period 1941-1990, and 

equal to 1.13 for 1950-1999 (Figure 3.13). The Pettit test statistic was, respectively, equal to 

125 and to 233 for the period 1941-1990 and for 1950-1999 (Figure 3.14). Finally, the SNHT 
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test statistic was equal to 3.27 for the period 1941-1990, and equal to 4.63 for 1950-1999 

(Figure 3.15). Hence, these last three tests, which are capable of locating the year where the 

break is likely, considered the series homogeneous, at the 5% level. 

 

Figure 3.13 – Buishand range test statistic standardized values (left: 1941–1990; right: 1950–
1999) for the annual number of wet days (threshold 1 mm) series of Beja (666) station 

 

Figure 3.14 – Pettit test results (left: 1941–1990; right: 1950–1999) for the annual number of wet 
days (threshold 1 mm) series of Beja (666) station 

 

Figure 3.15 – SNHT test results (left: 1941–1990; right: 1950–1999) for the annual number of 
wet days (threshold 1 mm) series of Beja (666) station 
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3.3.2.2 Illustration: results of Aljezur station 

For the testing series from Aljezur (30E.01) the Wald-Wolfowitz, the Mann-Kendall and the 

Von Neumann ratio test considered the series homogeneous, at the 5% level (Table 3.6). 

Table 3.6 – Absolute tests results for Aljezur (30E.01) at the 5% level for the Wald-Wolfowitz 
two-tailed test based on large sample approximation, the Mann-Kendall one-tailed test based on 

large sample approximation, and the Von Neumann ratio test. The three tests were applied to 
the annual number of wet days (threshold 1 mm). 

Wald-Wolfowitz Mann-Kendall Von Neumann 
Period Standardized 

U statistic Result Standardized 
S statistic Result N statistic Result 

1932–1999 4.09 Homog. 188.91 Homog.  

1932–1981 1.58 Homog. 

1950–1999 
  

1.77 Homog. 

For Aljezur (30E.01), the Buishand test statistic was equal to 1.552 for the period 1932-1981, 

and equal to 1.21 for 1950-1999. Hence, during the first fifty years of the testing series, a 

break was detected in 1942 (Figure 3.16). 

 

Figure 3.16 – Buishand range test statistic standardized values (left: 1932-1981; right: 1950-
1999) for the annual number of wet days (threshold 1 mm) series of Aljezur (30E.01) station 
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Figure 3.17 – Pettit test results (left: 1932-1981; right: 1950-1999) for the annual number of wet 
days (threshold 1 mm) series of Aljezur (30E.01) station 

 

Figure 3.18 – SNHT test results (left: 1932-1981; right: 1950-1999) for the annual number of wet 
days (threshold 1 mm) series of Aljezur (30E.01) station 

The Pettit test statistic was equal to 224 (in 1942, but not significant at 5%) for the period 

1932-1981, and equal to (–)178 for 1950-1999 (Figure 3.17). Finally, the SNHT test statistic 

was equal to 7.54 (in 1942, but not significant at 5%) for the period 1932-1981, and equal to 

6.21 for 1950-1999 (Figure 3.18). Thus, these two tests considered as homogeneous the 

Aljezur (30E.01) testing series, at the 5% level. 

3.3.3 Relative testing 

The relative testing stage comprises the application of four homogeneity tests, which are 

capable of locating the year where a break is likely. Three of them were applied to long-term 

composite (ratio) reference series, namely the SNHT for a single break, the Pettit test, and the 

Buishand range test. The proposed extension of the Ellipse test (SUR+ Ellipse test) was 

applied to the testing variable of the long-term series. The methodology and results from this 
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stage are described by Costa and Soares (2006), and detailed results are presented in 

Appendix III. 

The Buishand, Pettit, and SNHT tests were applied to 28 composite (ratio) reference series 

and concluded as homogeneous 13 series (5 previously classified as candidates, and 8 as 

references). For the remaining 15 series, at least one of the tests rejected the homogeneity 

hypothesis, at the 5% level. Table 3.7 shows the three tests results, including the break years 

detected and respective relative magnitudes (ratio between the average annual wet day count 

before and after two consecutive breaks), for the 11 series previously classified as candidates. 

Table 3.7 – Buishand, Pettit, and SNHT tests results. Break years detected (and respective 
relative magnitudes) are presented for the candidate series, at the 5% level. The three tests were 

applied to composite (ratio) reference series. 

Candidate References Buishand Pettit SNHT 

Beja (666) 
Azinheira Barros (25G.01) 
São Manços (23K.01) 

Homog. Homog. Homog. 

Badajoz Talavera 
(709) 

Azinheira Barros (25G.01) 
São Manços (23K.01) 

Homog. 1975 (0.98) Homog. 

Aljezur (30E.01) 
Barragem da Bravura (30E.03) 
Arronches (19N.01) 

1968 (1.04) 1968 (1.04) 1968 (1.04) 

Picota (30K.02) 
Barragem da Bravura (30E.03) 
Alcaria [Castro Marim] (30L.04) 

1988 (0.98) Homog. Homog. 

Odemira (28F.01) 
Azinheira Barros (25G.01) 
São Manços (23K.01) 

Homog. Homog. Homog. 

Aldeia de Palheiros 
(28H.01) 

Azinheira Barros (25G.01) 
São Manços (23K.01) 

Homog. Homog. Homog. 

Sabóia (29G.01) 
Santiago do Escoural (22H.02) 
Relíquias (27G.01) 

1949 (1.05) 
1984 (1.17) 

1984 (1.17) 1984 (1.17) 

Comporta (23E.01) 
Barragem da Bravura (30E.03) 
Azinheira Barros (25G.01) 

Homog. 1986 (1.10) 1986 (1.10) 

Viana do Alentejo 
(24I.01) 

Alcáçovas (23I.01) 
Santiago do Escoural (22H.02) 

Homog. Homog. Homog. 

Azaruja (21K.01) 
Santiago do Escoural (22H.02) 
Lisboa Geofísica (675) 

Homog. Homog. Homog. 

Redondo (22L.01) 
São Manços (23K.01) 
Santiago do Escoural (22H.02) 

1963 (1.14) 1963 (1.14) 1963 (1.14) 

The SUR+ Ellipse test was applied to the annual number of wet days (threshold 1 mm) at 27 

stations. The series from Viana do Alentejo (24I.01) was not tested using this approach 
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because it was not possible to determine a common period, without too many gaps, for all the 

series that would be appropriate to model simultaneously (candidates and their respective 

references). 

All the regressors (reference series) parameters of the SUR models are statistically significant 

at the 5% level, which is why some candidates have only one reference series (Table 3.8). 

Since each SUR model includes at least two candidate stations' data, some series were tested 

more than once through different models, depending on the common period of the series 

included in each model. Consequently, depending on the testing period, different models 

sometimes provided different results for a specific candidate series (see e.g. the results of 

Aljezur (30E.01) station in Table 3.8). This problem can be minimized by testing the 

candidate series through a different model whenever a peak in the graph from the Ellipse test 

seems suspicious (Figure 3.27, left graph), or by using a combination of statistical tests. 

Table 3.8 – Proposed extension of the Ellipse test (SUR+Ellipse) results. Break years detected 
(and respective relative magnitudes) are presented for the candidate series, for each model 

tested, at the 5% level. The models were applied to the annual number of wet days (threshold 1 
mm). 

Candidate References Period Model 
num. SUR+Ellipse 

Lisboa Geofísica (675) 
Relíquias (27G.01) 
Arronches (19N.01) 

1941-1999 5 Homog. 

Relíquias (27G.01) 
Arronches (19N.01) 

1945-1982 13 Homog. 
Beja (666) 

Lisboa Geofísica (675) 
Arronches (19N.01) 

1956-1997 12 Homog. 

Relíquias (27G.01) 
Azinheira Barros (25G.01) 

1956-1997 6 Homog. 
Badajoz Talavera 
(709) Relíquias (27G.01) 

Azinheira Barros (25G.01) 
1956-1997 12 Homog. 

Arronches (19N.01) 1941-1999 5 Homog. 
Arronches (19N.01) 1956-1997 6 1968 (1.04) 
Arronches (19N.01) 1932-1996 7 Homog. 
Arronches (19N.01) 1932-1994 9 Homog. 
Arronches (19N.01) 1932-1996 10 Homog. 
Arronches (19N.01) 1932-1994 11 Homog. 

Aljezur (30E.01) 

Arronches (19N.01) 1956-1997 12 1968 (1.04) 

Picota (30K.02) 
Barragem da Bravura (30E.03) 
Alcaria [Castro Marim] (30L.04) 

1957-1995 8 Homog. 
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Candidate References Period Model 
num. SUR+Ellipse 

Odemira (28F.01) Santiago do Escoural (22H.02) 1932-1994 9 1952 (0.92) 
Santiago do Escoural (22H.02) 1932-1996 7 Homog. 
Santiago do Escoural (22H.02) 1957-1995 8 Homog. 
Santiago do Escoural (22H.02) 1932-1994 9 Homog. 
Santiago do Escoural (22H.02) 1932-1996 10 Homog. 

Aldeia de Palheiros 
(28H.01) 

Santiago do Escoural (22H.02) 1932-1994 11 Homog. 
Sabóia (29G.01) Santiago do Escoural (22H.02) 1932-1994 11 1984 (1.17) 

Arronches (19N.01) 1956-1997 6 Homog. 
Santiago do Escoural (22H.02) 1957-1995 8 1986 (1.10) Comporta (23E.01) 
Arronches (19N.01) 1956-1997 12 Homog. 

Azaruja (21K.01) 
Santiago do Escoural (22H.02) 
Lisboa Geofísica (675) 

1945-1982 13 Homog. 

Redondo (22L.01) 
São Manços (23K.01) 
Relíquias (27G.01) 

1945-1982 13 1963 (1.14) 

In fact, according to Wijngaard et al. (2003), a combination of statistical methods and 

methods relying on metadata information is considered to be most effective to track down 

inhomogeneities. Furthermore, that problem might also happen with other testing methods, 

although it is harder to detect because the tests are usually applied only once. For example, 

applying the SNHT to the testing variable of Vendas Novas (21G.01) station for the period 

1932/92 concludes the series as homogeneous, but testing the period 1938/99 identifies a 

break in 1943. 

The SUR+Ellipse test approach concluded as homogeneous 17 series (5 previously classified 

as candidates, and 12 as references), at the 5% level. Table 3.8 shows the SUR+Ellipse test 

results for each model tested, including the break years detected and respective magnitudes, 

for the 10 series previously classified as candidates. 

For a 5% significance level, the SUR+Ellipse test results agree with at least one of the other 

three tests results for 18 stations (67%). For the remaining 9 stations, the SUR+Ellipse 

approach considered homogeneous series in 6 stations, where the other methods 

identified break years, and has identified break years in 3 stations which were considered as 

homogeneous series by the other methods. 
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The magnitudes of the breaks detected by the SUR+Ellipse test, but not identified by the other 

methods, range from –7.6% to 6.88%. Conversely, the magnitudes of the breaks detected by 

at least one of the other three tests, but not identified by the SUR+Ellipse test range from –

14.09% to 10.78%. Hence, there is no apparent connection between the potential breaks 

magnitudes and the ability of the SUR+Ellipse test to identify them. 

Considering the results from the four relative tests, all of them considered as homogeneous 12 

(43%) stations' series, whereas at least one of the tests rejected the homogeneity hypothesis 

for the remaining 16 station series (Figure 3.19), at the 5 % level. Only 4 of the 11 series 

previously classified as candidates were considered as homogeneous by all the relative tests. 

Considering the 17 series previously classified as references, 8 of them were considered as 

homogeneous by all the relative tests. 

 

Figure 3.19 – Results from the relative testing approach. Station circles are scaled with the 
number of tests that rejected the homogeneity hypothesis at the 5% significance level. The 
Buishand, Pettit, and SNHT tests were applied to 28 composite (ratio) reference series. The 

proposed SUR+Ellipse test was applied to the annual number of wet days (threshold 1 mm) at 27 
stations. 

Many of the breaks are detected by all four tests and are mainly located between 1949 and 

1954, and around 1986. Thus, there is an apparent trend towards less breaks in recent times 

(see also Figure 3.20), in contrast to that reported by other homogenization studies 

(Tuomenvirta, 2001; Wijngaard et al., 2003; Auer et al., 2005; Begert et al., 2005). There 

were only 20 cases of inhomogeneities detected in the 28 stations' series analysed, which is 

not surprising since the station selection was based on the absolute testing results. Hence, that 
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apparent trend may not be true if all the 107 station series were tested through the relative 

approach. Moreover, the number of inhomogeneities and the breaks magnitudes that can be 

detected strongly depend on the specifics of the monitoring network and the topography of the 

different study regions. Furthermore, there are only 4 stations with two break years, whereas 

the remaining 12 have just one break detected. As expected, for precipitation, with its high 

variability, few breaks can be detected (Wijngaard et al., 2003). 

The average length of the homogeneous subintervals turned out to be 24 years. Taking into 

consideration the length of the 28 series, the shorter homogeneous period has 3 years (break 

year detected in 1996 by the SNHT test when applied to the 1956-99 period, at Barranco do 

Velho (30J.01)), and the longer one has 52 years. 
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Figure 3.20 – Number of series by breaks detected by the four relative tests (5% level) per 
decade 

The relative magnitudes of the breaks are given by the ratio between the average annual wet 

day count before and after two consecutive breaks. The breaks magnitudes, of the 20 cases 

detected, range from –14.1% to 17.3%. The average of the absolute values of the relative 

magnitudes was 7.3%. 

Finally, to illustrate the homogenization analysis performed at this stage, the results of the 

four homogeneity tests applied are again discussed for the series from Beja (666) and Aljezur 

(30E.01). 
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3.3.3.1 Illustration: results of Beja station 

Recall from the previous section that, during the absolute testing stage, the Von Neumann 

ratio test rejected the homogeneity hypothesis for the Beja (666) series, at the 5% significance 

level. Through relative testing, this series was considered homogeneous by the four tests 

applied, at the 5% level. Hence, the breaks detected through absolute testing might indicate an 

abrupt change in the regional climate, or they might be caused by simultaneous changes in the 

observational network for which relative tests are insensitive. 

For Beja (666), the Buishand test statistic was equal to 1.20 for the period 1951-1990, and 

equal to 1.14 for 1959-1999 (Figure 3.21). The Pettit test statistic was, respectively, equal to 

105 and to 85 for the period 1951-1990 and for 1959-1999 (Figure 3.22). Finally, the SNHT 

test statistic was equal to 4.21 for the period 1951-1990, and equal to 2.0 for 1959-1999 

(Figure 3.23). Hence, these last three tests, which are capable of locating the year where the 

break is likely, considered the series homogeneous, at the 5% level. 

  

Figure 3.21 – Buishand range test statistic standardized values (left: 1951–1990; right: 1959–
1999) for the composite (ratio) reference series of Beja (666) station 

  

Figure 3.22 – Pettit test results (left: 1951–1990; right: 1959–1999) for the composite (ratio) 
reference series of Beja (666) station 
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Figure 3.23 – SNHT test results (left: 1951–1990; right: 1959–1999) for the composite (ratio) 
reference series of Beja (666) station 

For the Beja (666) series, the Ellipse test was applied to the residuals from three equations, 

from the SUR models numbers 5, 12 and 13 (Table 3.8), and all tests considered the series as 

homogeneous at the 5% level. For illustration purposes, see the SUR+Ellipse test results from 

models 5 (left graph) and 12 (right graph) in Figure 3.24. 

 

Figure 3.24 – SUR+Ellipse test results (left, SUR model 5: 1941–1999; right, SUR model 12: 
1956–1997) for the annual number of wet days (threshold 1 mm) at Beja (666) station 

3.3.3.2 Illustration: results of Aljezur station 

During the absolute testing stage, the Buishand test detected a break, in 1942, in the Aljezur 

(30E.01) series, at the 5% significance level. On the other hand, the four relative testing 

techniques detected a break, in 1968, in the Aljezur (30E.01) series, at the 5% level. 

For Aljezur (30E.01), the Buishand test statistic was equal to 1.88 for the period 1956-1995 

(Figure 3.25). The Pettit (Figure 3.26, left graph) and the SNHT (Figure 3.26, right graph) 

tests statistics were equal to (–)255 and to 13.81, respectively, in that period. Hence, these 

three tests detected a break, in 1968, in the Aljezur (30E.01) series, at the 5% level. 
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For the Aljezur (30E.01) series, the Ellipse test was applied to the residuals from seven 

equations, from the SUR models numbers 5, 6, 7, 9, 10, 11 and 12 (Table 3.8). Two Ellipse 

tests identified breaks in 1968 (models 6 and 12), whereas the other five considered the series 

as homogeneous, at the 5% level. For illustration purposes, see the SUR+Ellipse test results 

from models 5 (left graph) and 12 (right graph) in Figure 3.27. 

 

Figure 3.25 – Buishand range test statistic standardized values (1956–1995) for the composite 
(ratio) reference series of Aljezur (30E.01) station 

 

Figure 3.26 – Pettit (left) and SNHT (right) test results (1956–1995) for the composite (ratio) 
reference series of Aljezur (30E.01) station 
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Figure 3.27 – SUR+Ellipse test results (left, SUR model 5: 1941–1999; right, SUR model 12: 
1956–1997) for the annual number of wet days (threshold 1 mm) at Aljezur (30E.01) station 

As stated before, different models might provide different results for a candidate, depending 

on the testing period. This problem can be minimized by testing the candidate series through a 

different model whenever a peak in the graph from the Ellipse test seems suspicious (Figure 

3.27, left graph), or by using a combination of statistical tests. 

3.3.4 Geostatistical simulation approach 

For illustration purposes, the geostatistical simulation approach was applied to the testing 

variable data, from the period 1980-2001, from 4 candidate stations and 62 reference stations 

(Figure 3.28). The methodology and results from this approach are described by Costa et al. 

(2008a). 

The candidate stations selected are Beja (ECA 666), Aljezur (SNIRH 30E.01), Alferce 

(SNIRH 30G.01), and Santiago do Escoural (SNIRH 22H.02). The choice of these four 

stations relied on the results from the relative testing stage, since two of the series were 

considered homogeneous by all testing procedures within the 1980-2001 period (Beja and 

Aljezur), whereas for the other two series at least one of the testing procedures identified a 

break within that period. 



HO M O G E N I ZA T I O N  O F  P R E C I P I T A T I O N  T I M E  S E R I E S  

 187

 

Figure 3.28 – Locations of the 66 monitoring stations. Candidate stations are marked with 
pentagons. 

The 62 reference series were chosen taking into consideration the long-term and short-term 

series classification provided by the absolute testing results (Section 3.2.4.1). Stations 

classified as 'candidate', 'reference' and 'useful' (with data within the 1980-2001 period) were 

selected to illustrate the geostatistical simulation approach (except Badajoz (ECA 709), and a 

few series from the northeast of the Guadiana basin). 

The proposed approach allowed us to identify several inhomogeneities by comparing the 

observed (real) values of the candidate series, for each year, with the 2.5 and the 97.5th 

percentiles of the corresponding histograms of 50 simulated maps. The results from this 

technique were then compared with the results from the relative testing stage in which the 

SNHT, Pettit and Buishand range tests were applied to composite (ratio) reference series 

(Section 3.3.3). The geostatistical simulation approach identified not only the same break 

years (or within one-year range) as the other three testing procedures, but also revealed 

inhomogeneities in other years that were not detected by any of the three statistical tests, at a 

5% significance level. 

For Aljezur station, the four approaches considered the series as homogeneous. The series 

from Beja was considered as homogeneous by the three statistical tests, whereas the 

geostatistical approach identified a break in 1991 (Figure 3.29). 



HO M O G E N I ZA T I O N  O F  P R E C I P I T A T I O N  T I M E  S E R I E S  

 188

 

Figure 3.29 – Three simulated realizations of the annual wet day count in 1991, computed 
without data from Beja, at the nodes of a 1 km x 1 km grid. Histogram of the 50 simulated 

realizations at Beja location in 1991 (the real value is 60 days) 

For Alferce station, the SNHT concluded the series as homogeneous, but the Buishand and 

Pettit tests detected a break in 1984. Similarly, the geostatistical approach identified a 

breakpoint in 1983. In fact, at Alferce, the minimum simulated realization of the annual wet 

day count in 1983 was equal to approximately 33 days, whereas the observed value for this 

series was 30 days, thus a breakpoint was detected in this year by the proposed technique. 

The candidate series from Santiago do Escoural was considered as inhomogeneous by all 

techniques: the SNHT detected a break in 1989, the Buishand and Pettit tests identified a 

breakpoint in 1988, and the proposed procedure detected breaks in 1987, 1988 (Figure 3.30, 

left graph) and 1996 (Figure 3.30, right graph). At Santiago do Escoural, the maximum 

simulated realization of the annual wet day count in 1987 was equal to approximately 89 
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days, whereas the observed value was 91 days, so a break was detected in 1987 by the 

geostatistical simulation approach. 
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Figure 3.30 – Histograms of the 50 simulated realizations of the annual wet day count at 
Santiago do Escoural location (left: 1988; right: 1996), computed without data from Santiago do 

Escoural (the real values are 86 days in 1988, and 96 days in 1996) 

These promising results indicate the proposed geostatistical approach as a valuable tool for 

inhomogeneities detection in climate time series, by accounting for the joint spatial and 

temporal dependence between observations, and by enhancing the pre-eminence of the closer 

stations, both in spatial and correlation terms. 

All break years identified by the three well-established statistical tests considered were also 

detected by the proposed technique. Moreover, the geostatistical simulation approach allowed 

for the identification of breaks near the end of the series that were not detected by the other 

methods. In fact, this is one of the advantages of the proposed methodology relatively to other 

testing procedures commonly used which have less power in detecting breakpoints near the 

start and end of a series (Aguilar et al., 2003). 

Furthermore, it accounts for the detection of multiple breaks simultaneously. Another feature 

of the proposed methodology is that it allows using different sets of neighbouring stations at 

different years, including shorter and non-complete records. 

3.3.5 Overall classification 

For the homogenization analysis, a set of 45 long-term and 62 short-term series of daily 

precipitation were compiled. This section summarises the main results in an overall 

classification of the daily precipitation time series. 
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The homogeneity assessment was accomplished through four major stages (e.g. see Figure 3.6 

from the Methodology section). Following the hybrid approach proposed by Wijngaard et al. 

(2003) for the ECA dataset, we did not attempt to remove non-climatic inhomogeneities from 

the daily precipitation series, but rather provide a qualitative classification of each station's 

records. An overall classification of the daily precipitation series was established using four 

classes: ‘useful’, ‘potentially useful’, ‘potentially suspect’ and ‘suspect’. The criteria used are 

summarized in Table 3.9, and relied on the results of the homogeneity testing stages. 

Table 3.9 – Criteria used to establish the overall classification of the daily series 

Classification Criteria 

All relative approaches considered the series as homogeneous 
Useful 

Relative break(s) detected might be explained by several months without records 

Short-term series previously classified as 'useful' (the 6 absolute tests considered 
the series as homogeneous) Potentially 

useful 
Absolute break(s) detected might be explained by several months without records 

Potentially 
suspect Absolute break(s) detected could not be explained by non-climatic factors 

Suspect Relative break(s) detected could not be explained by non-climatic factors 

A series was classified as 'useful' when all relative approaches (the four relative statistical 

tests and the geostatistical approach) considered it as homogeneous. Whenever the daily series 

had several months without records near a break year, identified by some relative testing 

procedure, the series was also classified as 'useful', because it is conceivable that the 

inhomogeneous records were set to missing in the SNIRH database, and the tests rejections 

were due to them. A series was classified as 'suspect' when at least one of the relative 

approaches considered it as inhomogeneous and the break(s) detected could not be explained 

by non-climatic factors. 

Considering the series analysed through absolute testing only (both short and long-term), it is 

difficult to determine if changes or lack of changes result from non-climatic or climatic 

influences (Peterson et al., 1998), since it was not possible to find historic metadata support. 

Therefore, the intermediate classes, 'potentially useful' and 'potentially suspect', were 

established. Furthermore, as the short-term series were only analysed through absolute testing, 
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those series were classified as 'potentially useful' if the six absolute tests considered the series 

as homogeneous. 

Relative approaches that use data from reference stations are usually preferred because they 

aim to isolate the effects of station irregularities and to account for regional climate changes. 

However, as mentioned before, a relative approach for the homogenization of all series could 

not be used, as it would require an iterative procedure in which all stations in the data set were 

seen consecutively as candidates and references, which is out of the scope of this research. 

Following those criteria, approximately 13% of the 107 series were classified as 'useful', 55% 

were classified as 'potentially useful', 19% were classified as 'potentially suspect' and 13% as 

'suspect' (Table 3.10). 

Table 3.10 – Number of daily precipitation series in the classes ‘useful’, ‘potentially useful’, 
‘potentially suspect’ and ‘suspect’, by series length 

Classification Long-term series Short-term series Total number of 
station series 

Useful 14 0 14 

Potentially useful 8 51 59 

Potentially suspect 9 11 20 

Suspect 14 0 14 

Total num. of station series 45 62 107 

Besides the applied criteria and classification of each daily precipitation series, Appendix IV 

also provides some of the results from the basic quality analysis, namely the number of 

records flagged through basic quality control procedures. As discussed in Section 3.3.1, 

records flagged as 'suspect' through the 'flat line' check range from 0.1 mm to 5 mm and the 

most common values are 0.1 mm and 0.2 mm, thus might be considered useful. 

Among the series with records flagged as 'suspect' through subjective flagging procedures, the 

most problematic ones are Alcoutim (29M.01) and Picota (30K.02), both from the SNIRH 

database. It might be advisable to set to missing the daily records of the years 1954 to 1959 of 

Alcoutim, as they were found highly suspicious (this series was classified as 'potentially 

suspect' using the criteria described in Table 3.9). The daily precipitation records of 

December 1972 and December 1973 are precisely the same at Picota station, thus it might 

also be advisable to set them to missing. However, note that even though the responsible 
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institution is aware of that (Rodrigues, 1990) they were not set to missing in the SNIRH 

database (this series was classified as 'useful' using the criteria described in Table 3.9). 

Figure 3.31 shows the location of the 107 stations according to their series classification. 

Although defined with different criteria, the qualitative interpretation of the overall classes is 

similar to the interpretation given for the categories defined for the ECA series (Wijngaard et 

al., 2003). However, it is important to point out that we used the 5% significance level in all 

statistical tests, whereas those authors used the 1% level. Therefore, our classification is more 

conservative in the sense that we allowed for the rejection of the homogeneity hypothesis at 

stations that are considered homogeneous at the 1% significance level. 

 

Figure 3.31 – Overall classification of the daily precipitation series by station's location (Large 
dots: long-term series. Small dots: short-term series) 

The series classified as 'useful' seem to be sufficiently homogeneous for trend analysis and 

variability analysis. The series classified as 'potentially useful' and 'potentially suspect' should 

be used cautiously, from the perspective of the existence of possible inhomogeneities, as the 

homogeneity analysis performed might be considered inconclusive – even though all series 

were considered homogeneous by previous studies (Section 3.1.1). The series classified as 

'suspect' should be excluded from trend analysis and variability analysis, as there is strong 

evidence of inhomogeneities present. 



HO M O G E N I ZA T I O N  O F  P R E C I P I T A T I O N  T I M E  S E R I E S  

 193

3.3.6 Concluding remarks 

The homogeneity assessment of the precipitation time series was accomplished through four 

major stages, as detailed in Section 3.2 Methodology. The results from the procedures 

implemented and an overall classification of the precipitation series were described and 

discussed in the preceding sections. However, it is important to mention that other techniques 

were also investigated during the research work developed for the homogeneity assessment of 

the precipitation time series. 

During the last decades, artificial neural networks (ANNs) have been used in a wide variety of 

hydrologic contexts ranging from rainfall-runoff modelling and flood forecasting (e.g. 

Dawson and Wilby, 2001; de Vos and Rientjes, 2005; Kumar et al., 2005), to the prediction 

of rainfall patterns (e.g. Goswami and Srividya, 1996; Bodri and Čermák, 2000; Luk et al., 

2000; Ramírez et al., 2005; Boulanger et al., 2007). 

Goswami and Srividya (1996) proposed a generalized structure of a neural network which 

holds promise for long-range (>2 years) prediction of annual rainfall. Bodri and Čermák 

(2000) used a feed-forward neural network with back-propagation training algorithm that 

provided a good fit with the actual monthly data, and showed high feasibility in the prediction 

of extreme precipitation. The study from Luk et al. (2000) focuses on the problems faced in 

developing a rainfall forecasting model based in ANNs using observed rainfall records in both 

space and time. These authors identified an optimal set of spatio-temporal inputs for an ANN 

model to forecast short-term rainfall for an urban catchment. Ramírez et al. (2005) generated 

site-specific quantitative forecasts of daily rainfall, for the region of São Paulo State, Brazil, 

using a feed-forward neural network with resilient propagation learning algorithm. 

Teegavarapu and Chandramouli (2005) tested several methods for the estimation of missing 

daily precipitation data, including a number of variants of inverse distance weighting 

methods, ordinary kriging and ANNs. The application and testing of estimation methods 

developed in their study was carried out in a series of experiments using historical daily 

rainfall data (1971-2002) available at 20 monitoring stations in the state of Kentucky, USA. 

Their results suggest that the correlation weighting method, the ANN method (feed-forward 

network with back-propagation training algorithm) and the kriging approach are the most 

appropriate to estimate missing daily precipitation data. 
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According to Bodri and Čermák (2000), the main advantages of the neural network models 

are the following: (i) no particular knowledge is needed about the system being modelled, 

unknown effects could be involved through a proper design of the input–output patterns; (ii) 

relative simplicity of neural network building; and (iii) high ability of the artificial neural 

networks to reproduce stochastic signals. 

As discussed previously in the Literature review chapter (Section 2.2.3), further investigation 

is required to develop procedures for the homogenization of sub-monthly precipitation data 

(Easterling et al., 1999; Aguilar et al., 2003; Wijngaard et al., 2003; Auer et al., 2005). 

Therefore, motivated by the preceding discussion, an artificial neural networks approach was 

investigated for the homogenization of daily precipitation data, particularly multilayer 

perceptron architectures, which are the most popular types of feed-forward networks. 

However, this approach failed to succeed due to the lack of data to use in the back-

propagation training algorithm. In fact, the major difficulty found was the selection of records 

from the input data series, because the eligible sets of reference stations did not have enough 

precipitation observations from common periods. Thus, poor training data inevitably lead to 

unreliable networks. 



 

 

 

 

 

 

 

Chapter 4: TRENDS IN EXTREME PRECIPITATION 

 

 

 





 

 

 

4. Trends in extreme precipitation 

Portugal is geographically located in the southwest of the Iberian Peninsula (between 37° and 

42°N and 6.5° and 9.5°W). Global circulation and regional climate factors (e.g. latitude, 

orography, oceanic and continental influences) explain the spatial distribution of rainfall, as 

well as its intra-annual variability, i.e. seasonal variability (Trigo and DaCamara, 2000; 

Goodess and Jones, 2002). The precipitation regimes are of a different nature in northern and 

southern regions of Portugal: in the north, the precipitation regime has an orographic origin, 

whereas in the south it is mainly associated with vertical motions induced by cyclogenic 

activity (Trigo and DaCamara, 2000). The inter-annual variability is of a different nature, 

since the circulation variability is insufficient to explain the observed inter-annual variability 

of rainfall (Trigo and DaCamara, 2000; Goodess and Jones, 2002; Haylock and Goodess, 

2004). In southern Portugal, summer precipitation, almost close to zero during this season, is 

sometimes associated with local convective activity. These storms can occur with a large 

degree of independence from the weather circulation type, which characterizes the Iberian 

circulation for that specific day (Trigo and DaCamara, 2000). 

The results obtained by Goodess and Jones (2002) for the Portuguese stations show general 

agreement with those from Trigo and DaCamara (2000) who considered ten classes of 

weather circulation types for Portugal. Their results suggest that the cyclonic class is 

associated with a fairly homogeneous distribution of precipitation over most of the country. 

Moreover, the ‘rainy’ classes with an Atlantic origin (mainly W and SW; NW to a lesser 

degree) are to be associated with the observed strong decrease in precipitation from North to 

South. 

Recent studies, based on climate models and past observed records, predict a drier climate in 

the south of Europe as a result of increased evapotranspiration and a relatively slow decrease 

of rainfall amounts and precipitation frequency (e.g. Kostopoulou and Jones, 2005; IPCC, 

2007; Vicente-Serrano and Cuadrat-Prats, 2007). 

In arid and semi-arid regions such as the south of continental Portugal, research on the extent 

of dryness and temporal trends in heavy rainfall events is an important contribution to 

evaluate desertification dynamics and to identify areas potentially at risk from land 
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degradation. However, studies focusing on the role of regional climate change on erosivity 

and aridity factors are lacking for this region, especially at the local scale (Rosário, 2004b; 

Pereira et al., 2006). 

The research on the existence of trends and other temporal patterns in extreme precipitation 

indices, within the period 1955–1999, at 15 monitoring stations located in southern Portugal 

is described. This 45-year period was chosen to optimize data availability across the region, 

taking into consideration the homogenization analysis performed (Chapter 3). Among the 

numerous indices of precipitation extremes described in the literature (Peterson et al., 2001; 

Frich et al., 2002; Kiktev et al., 2003; Klein Tank and Können, 2003; Haylock and Goodess, 

2004; Kostopoulou and Jones, 2005; Moberg and Jones, 2005), we selected four of them 

(SDII, R5D, R30 and CDD) and developed two other indices (AII and FDD). Three of the 

indices (SDII, R5D and R30) provide information on the ‘wetness’, whereas the other three 

(CDD, AII and FDD) characterize the ‘dryness’. All indicators are based on fixed thresholds 

and most of them describe moderate climate extremes. The selected indices are appropriate 

for the purposes of this research, because they might contribute to assess climate dynamics 

that must be accounted for in impact studies related with water resources management, 

environmental policies, land use and desertification-related studies for the south of Portugal. 

The six daily precipitation indices were subject to a number of diagnosis tests in order to 

verify the existence of autocorrelation and heteroscedasticity of the regression errors. 

Depending on the tests' results, trend estimation was performed using three different 

regression models, namely the simple linear regression model, the autoregressive error model 

and a heteroscedastic linear model. Moving window statistics (mean and standard deviation) 

of the precipitation indices were also computed to reduce random fluctuations and provide a 

clearer view of their underlying behaviour, such as non-linear trends or periods with distinct 

climatic variability. 

This chapter is organized in three sections. The first one (Section 4.1), explains the criteria for 

station selection from the daily rainfall database that was developed in the previous chapter, 

and describes the rationale and definitions of the precipitation indices. Section 4.2 presents the 

methodology used to characterize the dynamic temporal evolution of extreme precipitation 

indices in the 1955–1999 period. Finally, in Section 4.3, the results are described and 

discussed, and some conclusions are drawn. 
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4.1 Study domain and data 

4.1.1 Analysis period and data selection 

The study domain refers to the south of continental Portugal, and is defined by the Arade, 

Guadiana, Mira, Ribeiras do Algarve and Sado basins. From the set of 107 stations compiled 

for homogeneity assessment, one station’s data were excluded from the analysis because 

multiple breakpoints were identified and the homogeneous periods were too short and 

unreliable; the Badajoz Talavera (709) station, in Spain, was also excluded. The daily rainfall 

database for the south of Portugal comprises records in the period 1931/2000, but the 

beginning and ending of each series is highly variable. The selection of stations with quality 

data for a long common period was developed through several stages. 

First, the extreme precipitation indices were computed for the set of 105 stations, regardless 

of their overall homogeneity classification. However, only the longest homogeneous period 

was used to build the indices for the series classified as 'suspect'. The extreme precipitation 

indices are sensitive to the number of missing days, thus the daily records of the selected 

stations should be as complete as possible. Consequently, for each station, the indices for a 

specific year were set to missing if there were more than 16% of the days missing for that 

year (Haylock and Goodess, 2004). 

Next, a first set of stations was selected for trend analysis by including all the series classified 

as 'potentially useful', 'useful' and the longest homogeneous period of the series classified as 

'suspect'. In this set, the number of stations with at least 30 years of common observations was 

very small. Hence, the next stage aimed to select stations classified as 'potentially suspect' 

with break years near the beginning of the series (identified through absolute testing), so that 

their longest homogeneous period could also be considered. This allowed us to determine the 

analysis period 1955/99, which is the longest common period for the final set of 15 series 

(Figure 4.1). These stations have less than 12% of the days missing in each year, and the data 

for most stations do not have any missing records. 
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Figure 4.1 – Stations selected for trend analysis. Dots: stations with nearly complete records in 
1955-1999. Triangles: additional stations with data within 1940-2000 used to build the regional-

average anomaly time series. 

4.1.2 Indices of precipitation extremes 

There are three main categories of extreme climate indicators: percentile-, threshold- or 

duration-based indices. The first category of indices is based upon statistical quantities such 

as percentiles, so the tails of the statistical distribution are examined and days exceeding (not 

exceeding) a given high (low) percentile are counted. The indices of the second category are 

based on counts of days crossing a specified fixed value (e.g. the number of days per year 

with daily precipitation exceeding 20 mm). Duration-based indices allow the characterization 

of the magnitude of wet/dry spells or heat/cold waves (e.g. the highest consecutive 5-day 

precipitation total). 

Indices based on percentile thresholds have a clear advantage for climate-change detection 

studies as they compare the changes in the same parts of the precipitation distributions and 

thus can be used in studies of wide regions containing a broad range of climates (Haylock and 

Nicholls, 2000; Brunetti et al., 2001; Griffiths et al., 2003; Klein Tank and Können, 2003). 

On the other hand, indices based on absolute thresholds are beneficial for impact studies as 

they can be related with extreme events that affect human society and the natural environment 

(Klein Tank and Können, 2003). 
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The later set of indices, and indices describing events with short return periods (moderate 

climate extremes), are suitable for the purposes of this research since they might contribute to 

assess climate dynamics at the local scale that contribute for land degradation and 

desertification prone areas of the south of Portugal. Accordingly, we selected four extreme 

precipitation indices recommended by the joint working group on climate change detection of 

the World Meteorological Organization – Commission for Climatology (WMO–CCL) and the 

Research Programme on Climate Variability and Predictability (CLIVAR, Peterson et al., 

2001; Frich et al., 2002; Peterson, 2005), and developed two other indices describing dry 

conditions. 

In the present study only annually specified indices are considered. Their definitions are listed 

in Table 4.1. Among the indices recommended by the WMO–CCL and the Research 

Programme on Climate Variability and Predictability, we selected three indices characterizing 

wet conditions (SDII, R5D, R30), and another one representing dry events (CDD). 

Table 4.1 – Acronyms and definitions of the six indices of precipitation extremes 

Index Explanation Units

SDII Ratio between the total rain on wet days and the number of wet days (R ≥ 1 mm) mm 

R5D Highest consecutive 5–day precipitation total mm 

R30 Number of days with daily precipitation totals above or equal to 30 mm days 

CDD Maximum number of consecutive dry days (R < 1 mm) days 

FDD Number of dry spells (consecutive period with at least 8 dry days, R < 1 mm) freq. 

AII Ratio between the total rain on dry days and the number of dry days (R < 10 mm) mm 

The SDII is a simple daily intensity index defined as the average precipitation per wet day. 

The R5D index is defined as the highest consecutive 5–day precipitation total and can be 

considered a flood indicator, since it provides a measure of short-term precipitation intensity. 

The R30 index characterizes the frequency of extremely heavy precipitation events and it is 

defined as the number of days with daily precipitation totals above or equal to 30 mm. This 

threshold fits the extreme events regime of the study area as the 30 mm value approximately 

corresponds to the 95% regional-average percentile of the 1961/90 climate normal. The CDD 

index corresponds to the maximum number of consecutive dry days, and therefore 

characterizes the length of the greatest dry spell. 



TR E N D S  I N  EX T R E M E  P R E C I P I T A T I O N 

 202

Not only drought but also moderate dry conditions have significant impacts in terms of crop 

losses, water supply shortages, land degradation and desertification in the south of Portugal. 

To better understand the pluviometric regime of this region, and the frequency and magnitude 

of dryness in particular, we developed two indices describing dry events (FDD and AII). 

The FDD index is defined as the number of dry spells. For return periods of two years, 

expected dry-day lengths vary from 60 to 80 days in the study region (Lana et al., 2008). The 

selected indices refer to precipitation events with return periods typically of less than one 

year, providing relevant information to impact studies. In the FDD definition, a dry spell is a 

consecutive period with at least 8 dry days. The average length of dry spells in a year ranges 

from 8 to 12 days in the study region (Lana et al., 2008). Therefore, increasing (decreasing) 

trends of FDD are indicators of a change in the mean frequency of dry events, rather than in 

the frequency of extremely dry situations. Although a change in the extreme values of the 

distribution obviously implies a change in the mean. 

Regarding the SDII, CDD and FDD indices, a wet day is defined as a day with at least 1 mm 

of precipitation (R ≥ 1 mm), thus a dry day has less than 1 mm of precipitation (R < 1 mm). 

Ceballos et al. (2004) state that rainfall amounts below this threshold are not absorbed by 

soils and are evaporated off directly. In fact, Moberg and Jones (2005) agree that, with this 

definition, a dry day is allowed to have a small amount of precipitation, but generally small 

enough for the ground not to recover after a long period of dryness. Moreover, thresholds 

lower than 1 mm can introduce trends in the number of wet days, associated with 

measurement errors introduced by the observers (Haylock and Nicholls, 2000; Haylock and 

Goodess, 2004) or by instrument inaccuracies. In fact, taking into consideration the ‘flat line’ 

check results (Section 3.3.1), it is prudent to adopt such a threshold for dry days (R < 1 mm) 

because it allows for minimizing the effect of any inaccuracy associated with measurement 

errors. 

In the definition of the AII index, we used the 10 mm threshold to typify a dry day (Ceballos 

et al., 2004; Lana et al., 2008). Let RL10t be the total rain on days with precipitation amount 

below 10 mm (R < 10 mm), and let RL10 be the number of days with R < 10 mm. Similarly to 

the SDII, the AII index is defined by RL10t/RL10 and can be interpreted as a simple aridity 

index, because it is a numerical indicator of the degree of dryness of the climate at a given 

location. Below the 10 mm threshold, the rainfall has a small effect on the soil water-content, 
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since the rainfall evaporates very quickly and hardly drains into the upper soil layer (Ceballos 

et al., 2004). Increasing (decreasing) trends of AII are indicators of change in the normal 

moisture availability, which is a sensitive issue for desertification susceptible regions. 

4.2 Methodology 

The six daily precipitation indices were subject to a number of diagnosis tests, at each 

station's location, in order to verify the existence of autocorrelation and heteroscedasticity of 

the regression errors. Depending on the tests' results, the trend estimation was performed 

using three different regression models. 

The indices are expressed as annual values Yt, t=1,…,T with the subscript t referring to the 

year (also denoted by Xt), and T is the length of the period covered by the station's series. The 

simple linear regression model, estimated by ordinary least squares (OLS), is 

(4.1) ),0(IN~,XY 2
ttt21t σεε+β+β=  

where εt is a disturbance term (error) and the notation εt ~ IN(0, σ2) indicates that each error is 

normally and independently distributed with mean 0 and variance σ2. If the assumption of 

constant errors variance is violated, the errors are said to be heteroscedastic. If 

heteroscedasticity is present and OLS regression is computed, the parameter estimates are still 

unbiased but they are no longer efficient, and inferences from the standard errors are likely to 

be misleading. 

Engle's Lagrange multiplier test for heteroscedasticity (Engle, 1982) allows to test if the errors 

variance has the form t21
2
tt X)(V α+α=σ=ε , where α1 and α2 are constant parameters. 

Whenever the null hypothesis of homoscedasticity was rejected, the following heteroscedastic 

linear model was fitted: 

(4.2) 
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where ηt is a disturbance term (error) with constant variance ση
2. The slope (β2) of the trend 

of the heteroscedastic linear model, in Equation (4.2), was calculated by the Yule–Walker 
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estimation method described in Gallant and Goebel (1976). The Yule–Walker method can be 

considered as generalized least squares using the OLS residuals to estimate the covariances 

across observations, thus Griffiths et al. (1993) use the term estimated generalized least 

squares (EGLS) for this method. 

If the error term is not independent through time, the OLS estimates of the regression 

coefficients are still unbiased but they are no longer as efficient as they would be if the 

autocorrelation was taken into account. Furthermore, the statistical tests of the significance of 

the OLS parameters are not correct because the standard error estimates are invalid. The 

presence of autocorrelation was investigated using the Durbin–Watson test. Whenever 

autocorrelation correction was needed, the following autoregressive error model was fitted: 

(4.3) 
),0(IN~,

,XY
2

tt1tt
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−

 

where ρ is the autoregressive error model parameter. The slope of the trend of the 

autoregressive error model, in Equation (4.3), was computed by estimated generalized least 

squares (EGLS) using the Yule–Walker estimate of ρ. 

Whenever the homoscedasticity hypothesis and the independent errors assumption were not 

rejected by the Lagrange multiplier test and the Durbin–Watson test, respectively, the slope of 

the trend was estimated by OLS. Many stations' wetness indices had significant non-Gaussian 

residuals (tested through the Shapiro–Wilk normality test). Other forms of OLS assumptions 

violations were not investigated (e.g. other forms of heteroscedasticity). Therefore, for all 

models fitted, the trend significance was assessed through the nonparametric Mann–Kendall 

test. 

The existence of significant trends in anomaly time series was also investigated using the 

described methodology. In each year, the anomalies of the indices time series were calculated 

from the base period of 1961–1990 by standardising the individual station's series using the 

climatological average and standard deviation of the base period. The regional-average 

anomaly series were computed using the full set of 19 stations' series and the analysis period 

was set to 1940–2000. As all stations do not contain complete data in this period, the regional 

anomaly of a year was obtained by weighting the anomalies according to the number of 

stations available for that year (Frich et al., 2002). 
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Any cyclical components in the variation of time series make it difficult to see the underlying 

trend. Aiming to improve our understanding of the indices time series, smoothing techniques 

were used to reduce random fluctuations and provide a clearer view of their underlying 

behaviour. The temporal variability of the extreme indices was analysed by means of moving 

window procedures. Moving average smoothing is a smoothing technique used to make the 

long-term trends and fluctuations of a time series clearer. Moving windows with a time span 

of 5 and 10 years were used to compute moving average series of the extreme precipitation 

indices. For the sake of simplicity, these series are denominated the temporal average of 

extremes (TAE) series. Moving 5 and 10 years standard deviation statistics of the indices 

were also computed in order to analyse the temporal evolution of their variability. These 

series are denominated the temporal variability of extremes (TVE) series. The TAE and TVE 

series were calculated for each station and were then averaged over the 15 stations to obtain 

the regional-average TAE and TVE series for the period 1955/99. 

4.3 Results and discussion 

The data analysis for this study was generated through specific programs developed using 

SAS software macros, SAS/STAT®, SAS/ETS® and SAS/INSIGHT® software, of the SAS 

System15 for Windows, Version 8. 

A regional correlation analysis, averaging the Spearman rank-order correlation coefficients of 

the six indices over the 15 stations, revealed that the dryness indices (CDD, FDD, AII) might 

provide information that is essentially different from the three wetness indices (SDII, R5D, 

R30), because they are uncorrelated with any of them. Nevertheless, the correlations between 

AII and the three wetness indices have positive signs, whereas the other two dryness indices 

show negative signs when correlated with the wetness indices. Interestingly, the correlation 

between AII and SDII is extremely weak. The correlation between CDD and FDD is negative 

but weak, which might indicate that an increase (decrease) in the length of the greatest dry 

spell will not necessarily entail a significant decrease (increase) in the mean frequency of dry 

events. The three wetness indices are moderately positively correlated with each other. 

                                                 

15 SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. In the USA and other countries ® indicates USA registration. 



TR E N D S  I N  EX T R E M E  P R E C I P I T A T I O N 

 206

4.3.1 Trends in extreme indices 

Depending on the diagnoses tests' results, trend estimation was performed using three 

different regression models, namely the OLS model, the autoregressive error model and the 

heteroscedastic linear model. Trend significance was tested using the Mann–Kendall test and 

results are presented at the 5% and 10% significance levels (Table 4.2 and Table 4.3). 

Table 4.2 – Trends in precipitation indices estimated with the OLS model (O), the Autoregressive 
error model (A) and with the Heteroscedastic linear model (H), for the period 1955/99. 

Significance of trends assessed using the Mann–Kendall test: values in bold face are significant 
at <5% level (marked with **) and <10% level (marked with *). 

Station Code CDD FDD AII SDII R5D R30 

Comporta 23E.01 –0.0094 (O) 0.0066 (O) –0.0007 (O) 0.0394** (A) 0.8518** (O) 0.0566* (H)

São Manços 23K.01 0.0558 (A) –0.0086 (O) –0.0029** (O) 0.0156 (O) 0.5813* (A) 0.0040 (O)

Azinheira 
Barros 25G.01 –0.1734 (O) 0.0154 (O) –0.0011 (O) 0.0066 (H) 0.1577 (O) 0.0194 (O)

Ferreira do 
Alentejo 25I.01 0.1489 (O) –0.0067 (O) –0.0032* (H) 0.0250** (A) 0.3814* (H) –0.0130 (O)

Pedrogão do 
Alentejo 25L.01 0.2258 (O) –0.0061 (O) –0.0039** (A) –0.0117 (A) 0.1358 (H) –0.0093 (A)

Santo Aleixo da 
Restauração 25O.01 –0.0232 (O) 0.0202 (O) –0.0040** (O) –0.0106 (H) 0.0076 (H) –0.0144 (A)

Aljustrel 26I.03 0.5369** (H) –0.0121 (O) –0.0032** (H) –0.0252 (A) –0.4006 (O) –0.0066 (A)

Castro Verde 27I.01 –0.2645 (H) 0.0497** (A) –0.0026 (O) 0.0056 (O) 0.1728 (H) –0.0030 (O)

Aldeia de 
Palheiros 28H.01 –0.0944** (O) 0.0130 (O) –0.0034** (O) 0.0022** (H) 0.1886 (O) –0.0099** (H)

Santana da Serra 28H.03 0.6785** (O) –0.0228 (O) –0.0039* (O) 0.0636** (H) 0.7582* (H) 0.0304 (H)

Barragem da 
Bravura 30E.03 –0.1025 (H) –0.0048 (A) –0.0021 (O) 0.0306* (H) 0.5972** (O) 0.0617** (H)

Sobreira 30I.02 –0.1640 (O) 0.0168 (A) –0.0034** (O) 0.0588** (H) 0.7732* (A) 0.0377 (H)

Picota 30K.02 –0.3487 (A) 0.0141 (H) –0.0023* (O) –0.0238 (O) –0.0183 (H) –0.0102 (O)

Alcaria (Castro 
Marim) 30L.04 0.0925 (O) –0.0194 (O) –0.0005 (O) –0.0124 (O) 0.6295 (O) –0.0014 (O)

Lisboa Geofísica 675 –0.0939 (H) –0.0080 (O) –0.0022 (O) –0.0038 (O) 0.1533 (H) 0.0022 (H)
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According with the correlation analysis results, the CDD and FDD indices have oppositely 

signed trends for most of the stations, although not statistically significant. Hence, these 

indices do not reflect significant changes neither in the length of dry spells, nor the frequency 

of dry events. On the other hand, the AII index reflects increases in the magnitude of dryness. 

A negative station trend in the AII index dominates in the 1955/99 period, which implies a 

significant increase of aridity over most of the study region (Figure 4.2). 

Table 4.3 – Trends in anomaly time series of precipitation indices estimated with the OLS model 
(O), the Autoregressive error model (A) and with the Heteroscedastic linear model (H), for the 

period 1955/99. Significance of trends assessed using the Mann–Kendall test: values in bold face 
are significant at <5% level (marked with **) and <10% level (marked with *). 

Station Code CDD FDD AII SDII R5D R30 

Comporta 23E.01 –0.0003 (O) 0.0034 (O) –0.0064 (O) 0.0267** (A) 0.0263** (O) 0.0301* (H)

São Manços 23K.01 0.0021 (A) –0.0049 (O) –0.0213** (O) 0.0116 (O) 0.0278* (A) 0.0026 (O)

Azinheira 
Barros 25G.01 –0.0083 (O) 0.0078 (O) –0.0081 (O) 0.0067 (H) 0.0072 (O) 0.0113 (O)

Ferreira do 
Alentejo 25I.01 0.0067 (O) –0.0033 (O) –0.0234* (H) 0.0208** (A) 0.0243* (H) –0.0113 (O)

Pedrogão do 
Alentejo 25L.01 0.0083 (O) –0.0031 (O) –0.0283** (A) –0.0053 (A) 0.0057 (H) –0.0045 (A)

Santo Aleixo da 
Restauração 25O.01 –0.0009 (O) 0.0095 (O) –0.0299** (O) –0.0086 (H) 0.0003 (H) –0.0081 (A)

Aljustrel 26I.03 0.0235** (H) –0.0044 (O) –0.0250** (H) –0.0117 (A) –0.0196 (O) –0.0041** (A)

Castro Verde 27I.01 –0.0126 (H) 0.0273** (A) –0.0181 (O) 0.0045 (O) 0.0090 (H) –0.0016** (O)

Aldeia de 
Palheiros 28H.01 –0.0038 (O) 0.0060 (O) –0.0234** (O) 0.0018 (H) 0.0083 (O) –0.0051** (H)

Santana da Serra 28H.03 0.0259** (O) –0.0123 (O) –0.0244* (O) 0.0377** (H) 0.0254* (H) 0.0136 (H)

Barragem da 
Bravura 30E.03 –0.0037 (H) –0.0024 (A) –0.0175* (O) 0.0144 (H) 0.0198 (O) 0.0182 (H)

Sobreira 30I.02 –0.0059 (O) 0.0075* (A) –0.0225** (O) 0.0254** (H) 0.0224* (A) 0.0104 (H)

Picota 30K.02 –0.0164* (A) 0.0103 (H) –0.0198** (O) –0.0085* (O) –0.0005 (H) –0.0030 (O)

Alcaria (Castro 
Marim) 30L.04 0.0034 (O) –0.0098 (O) –0.0039 (O) –0.0041 (O) 0.0140 (O) –0.0006 (O)

Lisboa Geofísica 675 –0.0010 (H) –0.0035 (O) –0.0166 (O) –0.0027 (O) 0.0055 (H) 0.0009* (H)
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The SDII monitors precipitation intensity on wet days and presents significant increasing 

trends in several stations, but without spatial consistency. A few of them also have significant 

increasing trends in the maximum 5-day precipitation totals (R5D), but this tendency is not 

significant for the majority of stations in the R30 index which characterizes the frequency of 

extremely heavy precipitation events. These results agree with other similar studies of the 

ECA series, corresponding to the same region and baseline period, reported in the literature 

(Klein Tank and Können, 2003; Miranda et al., 2006). 

 

Figure 4.2 – Ordinary kriging interpolation (800m × 800m grid) of the trends per decade in the 
AII index 

The trend results of the anomaly time series (Table 4.3) are exactly the same as the 

precipitation indices results (Table 4.2) concerning the trend signals, but the trends 

significance is different for a few stations and indices: 

- The anomaly time series of Picota (30K.02) has a significant decreasing trend in the 

length of dry spells (CDD), while the CDD time series is not significant. On the other 

hand, the CDD time series of Aldeia de Palheiros (28H.01) is decreasing significantly, 

but the corresponding anomaly time series is not. 
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- The anomaly time series of Sobreira (30I.02) has a significant increasing trend in the 

frequency of dry events (FDD), while the FDD time series is not significant. 

- The AII anomaly time series of Barragem da Bravura (30E.03) has a significant 

decreasing trend, which corresponds to an increase in the magnitude of dryness, while 

the AII time series is not significant. 

- The anomaly time series of Picota (30K.02) has a significant decreasing trend in the 

precipitation intensity (SDII), while the SDII time series is not significant. On the 

other hand, the SDII time series of Aldeia de Palheiros (28H.01) and Barragem da 

Bravura (30E.03) are increasing significantly, while the corresponding anomaly time 

series are not. 

- The R5D time series of Barragem da Bravura (30E.03) is increasing significantly, 

while the corresponding anomaly time series is not. 

- The anomaly time series of Aljustrel (26I.03), Castro Verde (27I.01) and Lisboa (675) 

have significant trends in the frequency of extreme precipitation (R30), while the R30 

time series are not significant for these stations. On the other hand, the R30 time series 

of Barragem da Bravura (30E.03) is increasing significantly, but the corresponding 

anomaly time series is not. 

Coherent spatial patterns of statistically significant changes emerge in the magnitude of 

dryness (AII), while the remaining anomaly time series show a lack of spatial consistency. 

The remaining indicators show mixed patterns of change but significant increases have 

occurred in the extreme amount derived from short-term precipitation intensity (R5D) in five 

stations, while for other three stations significant decreases in the number of heavy rainfall 

events (R30) have occurred. 

The existence of significant trends in the regional-average anomaly time series was also 

investigated (Figure 4.3) using 19 stations' data for the period 1940–2000. As discussed 

before, absence of spatial consistency and/or significant trends characterizes the majority of 

the precipitation indices calculated, except for the AII index. Therefore, not surprisingly, this 

was the only index with a significant decreasing trend (the p-value of the Mann–Kendall test 

is equal to 0.06) in the regional-average anomaly time series (Figure 4.3c), indicating an 

increase of dryness over the study region. 
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Figure 4.3 – Differences in the average extreme indices’ values between 1940 and 2000 from the 
average 1961/90 value of weighted regional stations. The trend of the AII annual anomalies 

series (c) is significant at the 6% level. 

4.3.2 Dynamic temporal evolution of extremes 

In order to reduce random fluctuations and improve our understanding of the indices time 

series, moving window statistics (mean and standard deviation) with a time span of 5 and 10 

years were computed for each station, and then averaged over the 15 stations to obtain a 

regional-average. This is a very useful approach because non-linear trends in precipitation 

extremes can be revealed, and periods with distinct climatic variability can be identified. The 

results obtained using windows with a time span of 5 years are identical to the ones obtained 

with a time span of 10 years, but a little noisier. For this reason, and for the sake of simplicity, 

only the later are presented. 

The moving average series of the extreme precipitation indices was named TAE series. The 

temporal dynamics underlying these series were captured through weighted local polynomial 

models (LOWESS smoother proposed by Cleveland, 1979) fitted with a time span of k years 

determined by generalized cross-validation. In order to point out any non-linear trends 
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underlying the TAE series, simple linear regression models, estimated by OLS, were also 

fitted. 

For all of the precipitation indices considered, the results show non-linear trends in the TAE 

series within the 1955/99 period at the large majority of stations. These results might explain 

why the regression models fitted to the indices time series could not significantly capture the 

trend signal for the majority of the stations' indices. Figure 4.4 shows the results of the 

regional-average TAE series of the six indices. The non-linear trends and cyclic patterns of 

the individual stations' TAE series (not shown) are identical to the ones illustrated in Figure 

4.4, but much more sharpen (any exceptions are referred in the text). 

 

Figure 4.4 – Ordinary least squares fitting (OLS, red line) and weighted local polynomial fitting 
(LOWESS smoothing, blue line) for each regional-average TAE series (moving average of the 

extreme index using a time span of 10 years), for the period 1955/99. 

As expected from the previous results, the TAE series of AII clearly reflect a strong increase 

in the magnitude of dryness during the period 1955/99. The maximum length of dry spells, 

characterized by the TAE series of CDD, has a decreasing trend until the middle of the 1980s 
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and then suddenly increases, keeping a positive trend through the last decade of the twentieth 

century. One exception occurs at Pedrogão do Alentejo (25L.01) where the TAE series of 

CDD has a well-defined cyclic pattern with no trend, and another one occurs at Picota 

(30K.02) where the duration of dry spells has a decreasing trend during the last three decades 

of the twentieth century. The TAE series of FDD show a different temporal pattern. The 

frequency of dry days decreases until the mid 1960s, and then has a parabolic behaviour by 

increasing until the middle of the 1980s and decreasing afterwards. Those findings led us to 

perform a regional correlation analysis between the CDD and the FDD indices by decade. The 

Spearman correlation coefficients between these indices were negative but extremely weak as 

reported before, but this time with one exception: in the last decade of the twentieth century, 

the correlation dropped to −0.66. These results seem to indicate that, in recent times, an 

increase in the length of the greatest dry spell entails a stronger decrease in the mean 

frequency of dry events. Moreover, those dryness indices remain uncorrelated with any of the 

other indices within that decade. 

The TAE series of R5D clearly reflect a strong increase in the short-term precipitation 

intensity during the last three decades of the twentieth century, except at Lisbon (675) and 

Aljustrel (26I.03). The regional-average TAE series of SDII, characterizing the precipitation 

intensity on wet days, shows a cyclic pattern with a small positive tendency after the 1970s. A 

closer look at the individual stations' TAE series reveals an opposite behaviour at six stations 

(codes: 675, 25G.01, 25L.01, 25O.01, 26I.03, 27I.01) located in the centre of the study 

region. These stations show no trend or a small negative tendency during the last three 

decades of the twentieth century, whereas all other stations have increasing trends in rainfall 

amounts on wet days. The temporal pattern in the frequency of extremely heavy precipitation 

events, characterized by the regional-average TAE series of R30, is similar to the pattern of 

the regional-average TAE series of SDII until the 1970s. Afterwards, the frequency of 

extreme rainfall has a cyclic pattern with a positive tendency until the mid 1990s and a sudden 

decrease at the end of this decade. A few stations' TAE series of R30 (stations' codes: 25I.01, 

25O.01, 26I.03, 27I.01) exhibit no trend or a small negative tendency in the last three decades 

of the twentieth century, whereas all other stations have increasing trends in the frequency of 

heavy rainfall. 

The TVE series (moving 5 and 10 years standard deviation statistics) allow the 

characterization of the extreme precipitation variability through time, and constitute indicators 
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of uncertainty associated with the temporal patterns of the extreme precipitation indices in the 

period 1955/99. Figure 4.5 shows the results of the regional-average TVE series of the six 

indices. 

The TVE series of wetness indices reveal an increase of variability in rainfall frequency and 

intensity along the 1955/99 period. The variability of the length of dry spells, characterized by 

the TVE series of the CDD index, has also increased through time, whereas the variability of 

the frequency of dry spells (FDD) shows a downward pattern with an increase during the 

1990s. These results also support the difficulties with capturing trend signals for these indices 

at the majority of stations. The TVE series of the AII index reflects a decrease in the dryness 

variability except during the 1990s. These results indicate that extreme precipitation 

variability and climate uncertainty are greater in recent times. 

 

Figure 4.5 – Ordinary least squares fitting (OLS, red line) and weighted local polynomial fitting 
(LOWESS smoothing, blue line) for each regional-average TVE series (moving standard 

deviation of the extreme index using a time span of 10 years), for the period 1955/99. 
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5. Space-time dynamics of precipitation extremes 

Information on the spatial variability of extreme precipitation is important for river basins 

management, flood hazards protection, studies related to climate change, erosion modelling 

and other applications for hydrological impact modelling. It is long recognized that 

topography and other geographical factors are responsible for considerable spatial 

heterogeneity of the precipitation distribution at the sub-regional scale (e.g., Martínez-Cob, 

1996; Daly, 2006). A comprehensive review on the complex relationship between 

precipitation, airflow and physiographic features of mountainous regions is presented by 

Johansson and Chen (2003), and Smith and Barstad (2004). Accordingly, it is commonly 

accepted that interpolation techniques that make use of the relationship between existing 

station data and explanatory physiographic variables (e.g., elevation or distance to the 

coastline) have the potential to better represent the actual climate spatial patterns, especially 

in mountainous areas and in regions with complex atmospheric influences (Prudhomme and 

Reed, 1998; Daly, 2006). 

Over the past two decades, efforts have been undertaken by many authors to incorporate 

elevation, and other physiographic features into the spatial interpolation of rainfall fields. 

Some examples are multivariate geostatistics such as kriging with external drift or cokriging 

(Goovaerts, 2000; Nicolau, 2002; Diodato, 2005; Lloyd, 2005), techniques combining 

distance weighting methods and regression (Faulkner and Prudhomme, 1998; Prudhomme 

and Reed, 1999; Perry and Hollis, 2005), splines (Hutchinson, 1995; Boer et al., 2001), and 

local regressions (Daly et al., 1994; Brunsdon et al., 2001). Most studies do not model 

simultaneously the rainfall space-time patterns, but rather focus on the generation of surfaces 

of long-term averaged precipitation (e.g., Martínez-Cob, 1996; Nicolau, 2002; Diodato, 

2005), or independently derived surfaces for yearly and monthly data (e.g., Lloyd, 2005; 

Perry and Hollis, 2005). 

The number of studies analyzing space-time patterns of extreme precipitation indicators at the 

regional and local scales is very limited. The literature review of Section 2.3.3 Indices of 

precipitation extremes shows that the large majority of studies only focus on the temporal 

linear trends of the indices. Although desirable, a spatial analysis is sometimes not feasible 
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due to the sparse number of monitoring stations over large study regions (Klein Tank and 

Können, 2003; Moberg et al., 2006). 

The works of Faulkner and Prudhomme (1998) and Prudhomme and Reed (1998, 1999) 

focused on an index of extreme rainfall, named RMED – median of the annual maximum 

rainfall, while Hundecha and Bárdossy (2005) and Perry and Hollis (2005) describe the 

mapping of several extreme precipitation indices. Faulkner and Prudhomme (1998), 

Prudhomme and Reed (1999), and Perry and Hollis (2005) used techniques that combine 

distance weighting methods and regression to produce gridded datasets of extreme 

precipitation indices, whereas Hundecha and Bárdossy (2005) used kriging with external drift 

to interpolate daily precipitation observations on a 5 km × 5 km grid and calculated the 

extreme precipitation indices, afterwards, on derived grids of 5, 10, 25 and 50 km2. 

Interpolation usually leads to a smoothing of the distribution inferred by the observations and 

thus to a loss of variance. For example, it is well known that kriging is locally accurate in the 

minimum error variance sense, but does not provide representations of spatial variability 

given the “smoothing” effect of kriging (Yamamoto, 2005). Moreover, the smoothing 

depends on the local data configuration, since it is minimal close to the data locations and 

increases as the location being estimated gets farther away from data locations. Such 

conditional bias is undesirable considering the modelling of floods or other extreme 

hydrological processes (Haberlandt, 2007). To overcome this limitation, geostatistical 

stochastic simulation has become a widely accepted procedure to reproduce the spatial 

variability and uncertainty of highly variable phenomena in geosciences (e.g., Franco et al., 

2006; Bourennane et al., 2007). Geostatistical simulation methods describe local data 

variability based on many, equally probable, realizations of the phenomenon, consistent with 

the data and its statistical characteristics. 

The accuracy and uncertainty of gridded data sets is difficult to assess because the field that is 

being estimated is unknown between data points. Spatial interpolation errors are 

interdependent functions of the station-network distribution, the efficacy of the interpolation 

procedure, and the real (but unknown) spatial distribution of the underlying climatic field 

(Willmott and Matsuura, 2006). Unlike traditional interpolation methods (e.g., cokriging), 

geostatistical simulation procedures aim at reproducing the spatial uncertainty of the attribute 

under study. The series of simulated maps can be post-processed and the spatial uncertainty 
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summarized (Goovaerts, 1997, pp. 431-436). For example, the uncertainty at an unsampled 

location can be evaluated through spread measures, such as the variance, derived from the 

corresponding local histogram. 

The Algarve and Alentejo regions, in the south of continental Portugal, have large areas with 

high susceptibility to desertification (Correia, 2004; Rosário, 2004b). As other southern 

European regions, the rainfall regime is Mediterranean and so highly variable in both the 

spatial and temporal dimensions. Accordingly, the climate is characterised by a dry and very 

hot season, and a very irregular distribution of precipitation over the wet season, as well as 

over the years, with very intense flood peaks and with frequent drought periods. As 

previously discussed (Section 2.1.1 Interactions of desertification and climate), whenever the 

precipitation variability is associated with extreme phenomena, such as intensive rainfall 

events or drought situations, it may cause soil degradation and vegetation loss that contribute 

to the desertification of the most vulnerable regions (Santo et al., 2004). 

One particularly relevant feature of the rainfall regime in southern Portugal is the occurrence 

of short but very intensive rainfall events that may lead to significant damages, by causing 

flash floods that affect small drainage basins (Ramos and Reis, 2002), and high rates of soil 

erosion (Pimenta, 1998; Ó and Roxo, 2001). In fact, soil degradation by water erosion is one 

of the major environmental problems to be faced in these regions (Loureiro and Coutinho, 

1995). Fragoso and Gomes (2008) concluded that the most southern region (Algarve) is the 

one where episodes of heavy rainfall are most frequent and exhibits the strongest torrential 

character. The Alentejo area, north of Algarve, is mainly an agro-silvo-pastoral region and the 

most affected by desertification and drought (e.g., Roxo et al., 1999; Santo et al., 2004). 

The southern part of the territory, especially the Alentejo region, is a drought prone area that 

is characterized by scarce precipitation, little runoff and water availability. Several studies 

characterized the local and regional droughts of these regions (e.g., Paulo et al., 2003; Paulo 

et al., 2005; Moreira et al., 2006) and, more generally, the drought phenomenon over Portugal 

(e.g., Santos, 1998; Santo et al., 2005). Water deficits are of great ecological and agronomic 

importance, especially during the dry season, and an irregular precipitation regime highly 

influences the productivity of rain fed agriculture. 

Accordingly, the research on the space-time dynamics of extreme precipitation events, 

including both dry and wet situations, is an important contribution to evaluate desertification 
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processes and to identify areas potentially at risk from land degradation in this region, 

especially at the local scale (Rosário, 2004b; Pereira et al., 2006). 

In the previous chapter, the existence of trends and other temporal patterns in six extreme 

precipitation indices were investigated and uncertainty about rainfall patterns evolution was 

assessed through regression models and smoothing techniques. Now, a subset of three 

indicators was selected for the characterization of the space-time dynamics of extreme 

precipitation in southern Portugal in the 1940/99 period: two indices describing wet 

conditions – R5D (Costa et al., 2008c) and R30 – and the proposed AII index, which 

characterizes dry conditions. The indices definitions and rationale were discussed in Section 

4.1.2. 

For exploratory purposes, the space-time patterns of the R20 index were also analyzed for the 

1970/99 period, and uncertainty was assessed (Costa and Soares, 2007). This indicator is 

based on the count of days with precipitation above the 20 mm threshold. Additionally, the 

spatial patterns of the CDD index were also investigated, but this index was discarded due to 

the spatial inconsistencies found. 

For the interpolation and uncertainty assessment of extreme precipitation, we explore the 

application of direct sequential cosimulation (coDSS), which allows incorporating covariates 

such as elevation. The choice of cosimulation follows the premises that elevation and 

precipitation may interact differently not only in space, but also during drier and wetter 

periods (Goovaerts, 2000; Costa and Soares, 2007). Furthermore, we showed in the previous 

chapter that there is a significant trend towards a drier climate in southern regions of Portugal, 

as expected from other studies focusing southern European regions (e.g., Kostopoulou and 

Jones, 2005; Vicente-Serrano and Cuadrat-Prats, 2007). 

Accordingly, the methodology not only accounts for local data variability by using stochastic 

simulation procedures, but also incorporates space-time models that allow capturing long-

term trends of extreme precipitation, and local correlations between elevation and 

precipitation through time. Elevation was used as secondary information, but other 

physiographic features were also investigated. 

The main objectives of this research can be summarized as follows: 
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1. to assess the space-time relationships between physiographic features, such as 

elevation, and extreme precipitation in southern Portugal; 

2. whenever considered relevant, to use those relationships to produce space-time 

scenarios for wet and dry extremes, from 1940 to 1999, on the basis of annual 

gridded datasets of precipitation indices; 

3. to provide an uncertainty evaluation of the produced scenarios; 

4. to use those scenarios to produce an additional set of maps of indicators 

summarizing their underlying space-time dynamics. 

The extreme precipitation indices were computed using quality daily precipitation 

observations measured at 105 monitoring stations with data within the period 1940/99. The 

direct sequential cosimulation was performed for generating one map per year for the two 

wetness indices (R5D and R30), using 800 m × 800 m grids and elevation as exhaustive 

secondary information. For the dryness index (AII), direct sequential simulation was used 

instead, because no relevant correlations were found with physiographic features. 

The produced maps are expected to be useful for the characterization of climate processes that 

may cause desertification, as well as for regional and local studies related to climate change, 

land and water resources management, hydrological modelling, and flood mitigation planning. 

The study region and data are described in Section 5.1, and the methodology is introduced in 

Section 5.2. The main results are presented and discussed in Section 5.3. The exploratory 

study characterizing the space-time patterns of the R20 index (Costa and Soares, 2007) is 

summarized in Section 5.3.1. Section 5.3.2 describes and discusses the space-time models 

used, including the relationships between physiographic features and the indices. The space-

time patterns of the wetness and dryness scenarios are analysed in Sections 5.3.3 and 5.3.4, 

respectively, and the uncertainty of the produced maps is assessed. 

5.1 Study domain and data 

The study domain refers to the south of continental Portugal, and is defined by the Arade, 

Guadiana, Mira, Ribeiras do Algarve and Sado basins. The domain includes the Algarve 

region, in the far South, and most of the Alentejo region (limited in the north by the Tejo 
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River). The study domain has different physiographic characteristics. In the far south, the 

relief is dominated by the two main Algarve’s mountains: Monchique on the west and 

Caldeirão on the east. In contrast, the Alentejo region is characterized mainly by vast flat to 

rolling country, the penplain, where the average altitude is approximately 200 m. The São 

Mamede mountain ridge, the highest in the Alentejo region with an altitude of 1000 meters, 

lies in the farthest northeast area. 

The extreme precipitation indices were computed using daily rainfall series from 105 stations, 

distributed irregularly over the study region (Figure 5.1), with data within the 1940/99 period 

(Figure 5.2). Recall from Section 4.1.1 that only the longest homogeneous period was used to 

build the indices for the series classified as 'suspect' through the homogenization analysis 

(Section 3.3.5 Overall classification). In order to maximize the spatial density of 

observations, data from stations classified in the intermediate classes ‘potentially useful’ and 

‘potentially suspect’ were also used. These categories correspond to the results from the 

absolute testing approach, which might be considered inconclusive without station history 

information. Furthermore, it was not possible to find historic metadata support for the 

irregularities identified in stations classified as ‘potentially suspect’. However, the tests 

applied may be very sensitive to changes in the internal time series properties, and the 

climatic information in the records may be relatively robust even if a negative test result has 

been obtained (Moberg and Jones, 2005). In this chapter, we place more emphasis on the 

spatial patterns and the large-scale space-time dynamics than the numeric values of trends. 

Moreover, the biases potentially introduced in the time series by inhomogeneous data are 

minimized by using different space-time models for each decade, instead of a single model for 

the whole analysis period. These arguments should justify the use of a dataset that might 

contain several inhomogeneous records. 

The extreme precipitation indices analysed in this chapter are listed in Table 5.1. Their 

definitions and rationale were further detailed in Section 4.1.2. 
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Figure 5.1 – Elevation of the study region in the south of Portugal and stations' locations 

 

Figure 5.2 – Distribution of the number of available stations by year 

Table 5.1 – Acronyms and definitions of the extreme precipitation indices 

Index Explanation Units

R5D Highest consecutive 5–day precipitation total mm 

R30 Number of days with daily precipitation totals above or equal to 30 mm days 

AII Ratio between the total rain on dry days and the number of dry days (R < 10 mm) mm 

Additionally, for exploratory purposes, the space-time patterns of the R20 index were 

analyzed for the 1970/99 period. This indicator is based on the count of days with 

precipitation above the 20 mm threshold, thus its rationale is similar to the R30 index. The 20 
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mm threshold approximately corresponds to the 90% regional-average percentile16 of the 

1961/90 climate normal. 

Nicolau (2002) investigated the contribution of several physiographic features for the 

prediction of precipitation fields in continental Portugal (for further details on this work see 

Table 2.6 in Section 2.3.2). The 125 explanatory attributes analysed by her include variables17 

related to: 

- Elevation 

- Slope 

- Dominant orientation of the hillsides 

- Counting of blockages to the advance of the air masses 

- Altimetry platforms reached since the coastline 

- Altimetry barriers in the neighbourhood of each cell 

- Shortest distance to the coastline 

- Distance to the coastline measured according to the W, NW and SW directions. 

Nicolau (2002) concluded that elevation was the most important variable to explain the 

variability of precipitation fields when analyzed on restricted neighbourhoods, whereas the 

remaining attributes had low correlations with the precipitation variables. 

Taking into consideration the thorough study of Nicolau (2002), elevation was considered as 

the most promising explanatory attribute to be used in the coDSS algorithm. Elevation data 

were then taken from a digital elevation model (DEM) with a grid resolution of 20 m × 20 m 

and resampled to an 800 m × 800 m grid mesh. The topographic variable derived is defined as 

the elevation of the nearest grid point to the meteorological station location, sometimes named 

smoothed elevation. 

The study region's relief is not very complex if compared to the north of continental Portugal 

or other European study regions (e.g., Prudhomme and Reed, 1999; Perry and Hollis, 2005). 

On the other hand, Trigo and DaCamara (2000) considered ten classes of weather circulation 

types for Portugal and verified that the ‘rainy’ classes with an Atlantic origin (mainly W and 

                                                 

16 Computed using the 15 stations series selected for trend analysis in the previous chapter. 
17 Some of them were evaluated using different radii and directions. 
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SW) could be associated with the observed strong decrease in precipitation from north to 

south. Consequently, we decided to investigate the relationship of the indices with the 

distance from each grid cell to the coastline measured according to the SW direction. This 

auxiliary attribute was determined for all 800 m × 800 m grid cells using a GIS (Figure 5.3). 

 

Figure 5.3 – Distance from each grid cell to the coastline according to the SW direction 

5.1.1 Spatial inconsistencies of the CDD index 

The space-time patterns of the CDD index were also investigated. The CDD index is defined 

as the maximum number of consecutive dry days per year, and a dry day corresponds to a day 

with less than 1 mm of precipitation. The spatial inconsistencies found in the CDD index were 

first revealed by a nugget effect in the decadal experimental semivariograms of the spatial 

component. 

Variograms, which are inverse measures of the correlation for a given vector distance h, 

describe how the spatial continuity changes as a function of the distance and direction 

between any pair of points in space and time. In bounded models (e.g., spherical and 

exponential), variogram values increase with increasing distance of separation until they reach 

a maximum, named sill, at a distance known as the range. Another parameter that may be 

added to the variogram model is named nugget. The nugget appears on the variogram as a 

discontinuity at the origin. The nugget effect results from high variability at short distances 
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that can be caused by lack of samples or sampling inaccuracy. When a nugget effect is 

present, the sill is the difference between the limiting value apparently reached by the 

variogram, when it becomes more or less stable, and the nugget. 

For example, the isotropic exponential model fitted to the spatial experimental semivariogram 

of the 1990s (Figure 5.4) has the following parameters: the estimated nugget is equal to 230 

(43% of the variability), the estimated sill is thus equal to 300, and the estimated spatial range 

is equal to 90 Km. The high variability at short distances in the CDD data revealed by the 

nugget effect is exemplified in Figure 5.5, which shows stations with high values of the CDD 

index surrounded by much smaller values, and vice-versa. These are inconsistent spatial 

features of this index, because it is not reasonable that stations separated by short distances 

have a very different value for the maximum length of dry spells. 

 

Figure 5.4 – Spatial experimental semivariogram of the 1990s data of the CDD index with the 
isotropic exponential model fitted 

  

Figure 5.5 – Plot of the CDD data of the years 1995 (left) and 1998 (right) 
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A thorough space-time analysis of the CDD data and the daily precipitation totals was then 

carried out by examining the suspicious records and their neighbouring values for each year. 

We verified that the spatial inconsistencies were not caused by missing daily rainfall records 

present in the data used to build the index. The spatial inconsistencies were due to the split of 

a long dry spell into two dry spells because of one, or two, days with small amounts of daily 

rainfall in some stations. 

Let d1 and d2 be the first and last days of a dry spell, and dR be an in-between day with rainfall 

at some areas/stations of the study region (d1<dR<d2). The following situations were found: 

- If the length of the period from d1 to dR was approximately equal to the period from dR 

to d2, the CDD values were sometimes spatially consistent in that area, even if the 

precipitation of day dR was greater than or equal to 1 mm in some stations. 

- If the length of d1–dR was greater than the length of dR–d2, and the precipitation of day 

dR was greater than or equal to 1 mm in many stations, three types of situations 

occurred: 

 At some stations, the CDD values were defined by a dry spell that occurred 

in another period of the year, other than d1–d2. This caused spatial 

inconsistencies for some stations in several years, while for a few stations 

(e.g., Lisboa) it did not. 

 Most of the stations had high CDD values defined in the d1–dR period, 

while only one, or a few, had low values defined in the dR–d2 period 

causing spatial inconsistencies. 

 Most of the stations had low CDD values defined in the d1–dR period, 

while only one, or a few, had high values defined in the d1–d2 period 

causing spatial inconsistencies. 

- Conversely, if the length of d1–dR was smaller than the length of dR–d2, and the 

precipitation of day dR was greater than or equal to 1 mm in many stations, similar 

situations have occurred. 

An empirical analysis of the daily precipitation totals of days such as dR indicated that many 

of them were smaller than 5 mm, a number of them ranged from 5 mm to 10 mm, and a few 

of them were greater than 10 mm. Therefore, in order to remove these inconsistencies, new 

'CDD indices' were defined using different thresholds to characterize a dry day. Let CDD10, 
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CDD5 and CDD05 denote the indices defined as the maximum number of consecutive dry 

days per year with a dry day defined as a day with less than 10, 5 and 0.5 mm of precipitation, 

respectively. The space-time analysis was then repeated for these new 'CDD indices'. For 

illustration purposes, the parameters of the isotropic exponential models fitted to the spatial 

experimental semivariograms of the 1990s of these indices are summarized in Table 5.2. 

Table 5.2 – Parameters of the exponential models fitted to the spatial experimental 
semivariograms of the 1990s of CDD indices defined using different thresholds to characterize a 

dry day 

Index Nugget 
(% of variability) Sill Spatial range 

(Km) 

CDD05  (dry day: R<0.05 mm) 270 (50%) 270 90 

CDD5  (dry day: R<5 mm) 190 (32%) 400 90 

CDD10  (dry day: R<10 mm) 500 (54%) 430 90 

The high variability at short distances remained present in the data even for indices with 

higher thresholds defining a dry day. Hence, the spatial inconsistencies were not totally 

removed. Therefore, the CDD index was discarded for further analysis. 

5.2 Methodology 

This section briefly introduces the kriging techniques and describes the reasoning of the 

geostatistical simulation algorithms implemented. Interested readers should refer to 

geostatistical textbooks (e.g., Isaaks and Srivastava, 1989; Goovaerts, 1997) for detailed 

descriptions of univariate and multivariate geostatistical interpolation methods. For a 

thorough description of the direct sequential simulation, and cosimulation, algorithms the 

reader is referred to Soares (2001). 

Geostatistical estimators, known as kriging, provide statistically unbiased estimates of surface 

values from a set of observations at recorded locations, using the estimated spatial (and 

temporal) covariance model of the observed data. 

Consider the two dimensional problem of estimating a primary variable z at an unsampled 

location u0. Let {z(uα), α=1, …, n} be the set of primary data measured at n locations uα. 

Most of geostatistics is based on the assumption that the set of unknown values is a set of 
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spatially dependent random variables, hence each measurement z(uα) is a particular realization 

of the random variable Z(uα). Kriging uses a linear combination of neighbouring observations 

to estimate the unknown value at the unsampled location u0. This problem can be expressed in 

terms of random variables as: 

(5.1) ( ) ( )∑
=α

ααλ=
n

1
0 uZuẐ  

The optimal kriging weights λα are determined by solving the kriging equations that result 

from minimizing the estimation variance while ensuring unbiased estimation of Z(u0) by 

( )0uẐ . 

Kriging methods require a stationarity assumption, expressed in two parts. First, the mean of 

the process is assumed constant and invariant with spatial location (first order stationarity). 

Second, the variance of the difference between two values is assumed to depend only on the 

distance h between the two points, and not on their location u (second order stationarity). 

Stationarity assumptions on kriging are traditionally accounted for by using local search 

neighbourhoods so that the dependence on stationarity becomes local (Goovaerts, 1997). 

When developing the kriging equations the model of spatial covariances, or variogram 

(inverse function of the spatial covariances), is assumed known. This is a key function of 

geostatistics and characterizes the variability of the spatial (and temporal) patterns of physical 

phenomena. Typically, a mathematical variogram model is selected from a small set of 

authorised ones (e.g. exponential or spherical) and is fitted to experimental semivariogram 

values calculated from data for given angular and distance classes. 

The experimental semivariogram )h(γ̂  is computed as half the average squared difference 

between data pairs belonging to a certain angular and distance class: 

(5.2) [ ]∑
=α

αα +−=γ
)h(N

1

2)hu(z)u(z
)h(N2

1)h(ˆ  

where N(h) is the number of pairs of data locations a vector h apart. 

In bounded models (e.g., spherical and exponential), variogram functions increase with 

distance until they reach a maximum, named sill, at an approximate distance known as the 
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range. The range is the distance h at which the spatial (or temporal) correlation vanishes, i.e. 

observations separated by a distance larger than the range are spatially (or temporally) 

independent observations. 

5.2.1 Simple kriging 

The simple kriging estimate of z(u0) is: 

(5.3) [ ]∑
=α

αα −λ=−
)u(n

1
0

SK
0SK m)u(z)u(m)u(ẑ  

where m is the stationary mean of Z(u), and )u( 0
SK
αλ  is the weight assigned to datum z(uα) 

within a search neighbourhood that comprises n(u) samples. 

5.2.2 Collocated cokriging 

Consider now the situation where the set of primary data {z(uα), α=1, …, n} is complemented 

by secondary data available at all estimation grid nodes and denoted by y(u). The collocated 

cokriging estimate is (Goovaerts, 2000): 

(5.4) ( ) ( ) ( ) ( ) ( )[ ]∑
=α

αα +−λ+λ=
)u(n

1
ZY00

CoK
0

CoK
0CoK mmuyuuzuuẑ  

where mZ and mY are the global means of the primary and secondary variables, Z(u) and Y(u), 

respectively. Note that only the secondary datum collocated at the location u0 being estimated 

is retained for estimation. 

5.2.3 Direct sequential simulation and cosimulation 

Let {z(uα, ti): α=1,…,n; i=1,…,T} be the set of climate data measured at n locations uα and in 

ti time instants (years). The n monitoring stations do not have to be all informed at the same T 

time instants (i.e., a number of z-values can be missing). The set of climate observations 

correspond to outcome values (realizations) of a spatiotemporal random variable Z(u, t) that 

can take a series of values at any location in space u and instant in time t according to a 

probability distribution. 



SP A C E-T I M E D Y N A M I C S  O F  P R E C I P I TA T I O N  E X T R E M E S 

 231

For each instant in time ti,, the sequence of the direct sequential simulation (DSS) algorithm 

of a continuous variable can be described as follows (Soares, 2001): 

1. Randomly select the spatial location of a node z(u0, ti) in a regular grid of nodes to be 

simulated; 

2. Estimate local mean and variance identified with the simple kriging estimator 

(Equation (5.3)) and kriging variance, respectively. Sample from the global histogram 

a value zs(uk, ti) centred in the estimated local mean and variance. 

3. Return to step (1) until all nodes have been visited by the random path. 

Soares (2001) also extended the DSS algorithm for the joint simulation of different variables, 

thus named direct sequential cosimulation (coDSS) algorithm. Instead of simulating all 

variables simultaneously, it simulates each variable in turn conditioned to the previous 

simulated variable. 

The coDSS algorithm uses collocated simple cokriging to estimate local means and variances, 

incorporating the secondary information and the relationship between secondary and primary 

variables. In this study, the collocated cokriging was applied with a Markov-type 

approximation (Goovaerts, 1997, pp. 237-239) for cross-continuity model. Hence, only the 

primary variable variogram model and a correlation model between primary and secondary 

data were required. 

The DSS and coDSS algorithms are applied in order to obtain a set of m equally probable 

realizations of Z(u, t) at all grid nodes and all instants in time: {zs(uα, ti): s=1,…,m; α=1,…,N; 

i=1,…,T}, where N is the total number of grid nodes to be simulated for each instant in time. 

For a given instant in time t0, the set of simulated values {zs(u0, t0): s=1,…,m} defines the 

local histogram at the location (grid node) u0 for that instant. 

To reproduce the spatial distribution and uncertainty of the indices characterizing wet 

extremes (R5D and R30), m=100 equiprobable simulated realizations were generated through 

the coDSS algorithm on 800 m × 800 m grids (N=74683), one for each year (T=60), using 

different space-time continuity and correlation models for each decade, as briefly described in 

the following section and further detailed in Section 5.3.2. Elevation was used as secondary 

information, but the distance to the coastline measured according to the SW direction was also 
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investigated (Section 5.3.2.1). For the dryness index AII, direct sequential simulation was 

used instead, because no relevant correlations were found between this index and 

physiographic features. 

5.2.4 Space-time models 

For exploratory purposes, to reproduce the spatial distribution and uncertainty of the R20 

index, 100 equiprobable simulated realizations were generated through the coDSS algorithm 

on 800 m × 800 m grids, one for each year. For each decade, the histogram of simulated 

values over the study area was allowed to range from zero (minimum observed value) to the 

maximum observed value of the R20 index (equal to 29, 33 and 37 days for the 1970s, 1980s 

and 1990s, respectively) plus 10% of each maximum. The coDSS algorithm used a different 

correlation value between the primary and secondary variable (elevation) for each year, and a 

different space-time variogram model of the R20 index for each decade. This approach 

assumes a constant relationship between elevation and the R20 index over the study region, 

but allows for changes in the relationship through time. 

Simulated images were generated by the coDSS algorithm using for each decade a different 

space-time variogram model of the primary variable (R5D and R30 indices), and a different 

correlation model between primary and exhaustive secondary data. This strategy allows 

accounting for possible long-term trends or fluctuations in extreme rainfall, and for local 

changes in the relationship between secondary attributes and extreme precipitation through 

time. 

To allow accounting for changes in correlation across the study area, the relationship between 

secondary attributes and extreme precipitation, described by the correlation models, was 

assessed locally. First, for each decade, local correlations were calculated using a search 

neighbourhood centred at each station's location (further details from this stage are described 

in Section 5.3.2.1). To reproduce the spatial distribution of the relationship between the 

secondary attributes and extreme precipitation, the second stage used the DSS algorithm to 

interpolate the local correlations. In this stage, 50 equiprobable simulated realizations of the 

local correlations were generated through the DSS algorithm for each decade on 800 m × 800 

m grids. The correlation models used later with the coDSS algorithm were determined by 
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computing the mean of the distribution of the 50 simulated values at each grid node, by 

decade. 

To reproduce the spatial distribution and uncertainty of the dryness index AII, the DSS 

algorithm used a different space-time variogram model of the primary variable for each 

decade. 

5.2.5 Maps summarizing the space-time dynamics 

For a given instant in time t0, the set of m simulated values {zs(u0, t0): s=1,…,m} defines the 

local histogram at the grid node u0 for that instant. The space-time scenario for a given year t0 

corresponds to the average of the local histograms that were computed for all grid cells uα: 

N,...,1,)t,u(z
m
1)t,u(z

m

1s
0

s
0

M =α= ∑
=

αα . 

Similarly, the uncertainty of the space-time scenario for a given year t0 was evaluated by both 

the standard deviation and the coefficient of variation of the local histograms. 

Using the space-time scenarios of the 1940/99 period (i.e., 60 annual gridded datasets for each 

index), summary maps of extreme precipitation were produced, namely probability, 

correlation and trend maps. Let {zM(uα, ti): α=1,…,N; i=1,…,T} be the set of T=60 annual 

gridded datasets of a given extreme precipitation index Iz. 

The probability maps for the wetness indices were computed as follows. At each grid node uα, 

the probability of exceeding a given value zk was evaluated as the proportion of the T 

estimated values zM(uα, ti) that exceed that threshold. In other words, the probability of Iz to be 

equal or greater than a fixed threshold zk was approximated by the corresponding relative 

frequency computed with the sixty yearly values that were estimated at each grid cell: 
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T
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T
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where w(uα, ti) are indicator data defined as 
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Since lower values of the AII index indicate greater dryness, the probability maps for this 

index correspond to the estimated probability of AII to be less than a fixed threshold zk: 
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where w(uα, ti) are indicator data defined as 
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Let {zCV(uα, ti): α=1,…,N; i=1,…,T} be the set of T=60 annual gridded datasets of the 

uncertainty evaluation measured by the coefficient of variation for a given extreme 

precipitation index Iz. Using this set of data, probability maps of the uncertainty of the 

scenarios to be greater than or equal to fixed thresholds were computed by replacing zM(uα,ti) 

with zCV(uα,ti) and Iz(uα) with Iz
CV(uα) in equations (5.6) and (5.5), respectively. Iz

CV(uα) 

denotes the coefficient of variation of the scenarios produced for the index Iz. 

The map of local correlations between two extreme precipitation indices, IZ and IY, was 

produced by computing the Pearson's correlation coefficient at each grid cell uα using the T 

estimated values zM(uα, ti) and yM(uα, ti) of the indices IZ and IY, respectively: 
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where zM(uα, ti) are data points measured at the grid cell uα and time ti; Mz  and My  

correspond to the average in time of the values zM(uα, ti) and yM(uα, ti), respectively; and, Mz
s  

and My
s  correspond to their respective standard-deviations. 

Local trend maps were computed using both parametric and nonparametric estimators of the 

trend slope magnitude. The parametric yearly trend maps were produced by computing the 
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ordinary least squares (OLS) estimates of the trend slope magnitude at each grid cell uα using 

the indices scenarios for 1940/99: 
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The nonparametric yearly trend maps are based on the distribution free estimates of the trend 

slope magnitude, described by Modarres and Silva (2007), computed at each grid cell uα using 

the indices scenarios for 1940/99: 
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where zM(uα, tj) and zM(uα, ti) are data points measured at years tj and ti, respectively. 

Note that both the DSS and coDSS algorithms provide exact interpolation values at locations 

with observed data. Consequently, at monitoring stations' locations, the data used to compute 

the summary maps correspond to the observed values of the indices except for the years with 

missing data that were thus estimated through geostatistical stochastic simulation. 

5.3 Results and discussion 

The DSS and coDSS algorithms were implemented using geoMS© – Geostatistical Modelling 

Software18. The pre- and post-processing of data were performed through specific programs 

developed using SAS software macros and the SAS/STAT® software of the SAS System19 for 

Windows, Version 8. 

                                                 

18 geoMS© – Geostatistical Modelling Software was developed by Centro de Modelização de 
Reservatórios Petrolíferos (CMRP). Copyright CMRP-IST 2000. 
19 SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. In the USA and other countries ® indicates USA registration. 
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5.3.1 Exploratory study: R20 index 

For the interpolation and uncertainty assessment of the R20 index in the southern region of 

continental Portugal, for the period 1970/99, we explore the application of direct sequential 

cosimulation (coDSS), which allows incorporating covariates such as altitude. The R20 index 

characterizes the frequency of heavy precipitation events. The coDSS algorithm was 

implemented on 800 m × 800 m grids, one for each year, using elevation as exhaustive 

secondary information. 

The results from this exploratory study are described by Costa and Soares (2007). The 

relationship between the R20 index and elevation is discussed in Section 5.3.1.1, and the 

space-time continuity of extreme precipitation is described in Section 5.3.1.2. Finally, the 

space-time patterns of the extreme precipitation index are analyzed (Section 5.3.1.3), and 

uncertainty is assessed (Section 5.3.1.4). 

5.3.1.1 Relationship between extreme precipitation and elevation 

It is recognized that topography and other geographical factors are responsible for 

considerable spatial heterogeneity of the precipitation distribution at the sub-regional scale. 

Goovaerts (2000) incorporated a DEM into the spatial interpolation of annual and monthly 

rainfall observations, averaged over the period of January 1970 to March 1995, and measured 

in the most southern region of continental Portugal (Algarve). Precipitation generally 

increases with elevation because of the orographic effect of mountainous terrain. The relief of 

Algarve, which is within our study region, is dominated by two mountainous regions. 

Therefore, has expected in that work, the linear correlation coefficient between annual rainfall 

and elevation was equal to 0.79. Moreover, Goovaerts (2000) found that the correlation 

coefficient was wicker in dry months (equal to 0.33 in August). 

For the implementation of the coDSS procedure, a preliminary analysis revealed that the 

regional correlation (Pearson's correlation coefficient averaged over the study region) between 

the extreme precipitation index and elevation ranges from 0.24 to 0.62 within the period 

1970/99 (Figure 5.6). The terrain north of the Algarve region does not have high elevations, 

which might explain those weak to moderate correlations. 
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Figure 5.6 – Regional correlation between the R20 index and elevation, by year 

Figure 5.6 shows that the relationship between elevation and the R20 index has decreased 

along the study period. Accordingly, the coDSS algorithm incorporated a different correlation 

value between the primary and secondary variable for each year. 

5.3.1.2 Space-time continuity of extreme precipitation 

Variograms were calculated according to Equation (5.2). Experimental space-time semi-

variograms were calculated for three decades (1970-79, 1980-89, and 1990-99), and spherical 

models fitted. The spatial dimension was modeled using an isotropic variogram. The 

parameters of each variogram model fitted, and the decadal average of the regional correlation 

between the R20 index and elevation, are summarized in Table 5.3. 

Table 5.3 – Average of the regional correlation between the R20 index and elevation, and 
parameters of the space-time variograms, by decade 

Parameters of the spherical variogram models  
Decade Regional 

correlation Spatial range 
(m) 

Temporal range 
(years) Sill 

1970-79 0.54 46000 4.5 25.09 

1980-89 0.45 160000 3 32.71 

1990-99 0.38 150000 3.3 26.02 

There are no apparent tendencies concerning the temporal component of the semi-variograms. 

However, the relationship between elevation and the R20 index has decreased along the study 

period (Figure 5.6), whereas there is evidence of an increase of the spatial continuity of the 

frequency of extreme precipitation events in the last decades. This evidence is consistent with 
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the results of Costa et al. (2008b) for other extreme precipitation indices computed for the 

same region within the 1940/99 period. 

5.3.1.3 Space-time scenarios 

Using the coDSS technique, a set of 100 equiprobable simulated realizations of the extreme 

precipitation index was computed at each simulated grid node, by year. The space-time 

inference was performed by means of computing the mean and the median of those 

distributions. For illustration purposes, the results of 1974 and 1999 are presented since they 

correspond to the years with the maximum (0.62) and minimum (0.24) regional correlation 

coefficients between the R20 index and elevation, respectively. 

The maps of the median (Figure 5.8 and Figure 5.10) are less smoothed than the maps of the 

mean (Figure 5.7 and Figure 5.9). Within the study period, the higher values of the R20 index 

are mostly located in the two mountainous regions of Algarve, though not very evident in the 

maps of 1974 (Figure 5.7 and Figure 5.8). 

 

Figure 5.7 – Mean of the distribution of the 100 simulated values of the R20 index for the year 
1974 (in days) 
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Figure 5.8 – Median of the distribution of the 100 simulated values of the R20 index for the year 
1974 (in days) 

The spatial continuity of the frequency of extreme precipitation events seems to be lower in 

the northern part of the maps because of the lack of monitoring station's data in that area. 

However, it is important to call attention to the fact that most of that area is out of the study 

region (Figure 5.1). 

 

Figure 5.9 – Mean of the distribution of the 100 simulated values of the R20 index for the year 
1999 (in days) 
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Figure 5.10 – Median of the distribution of the 100 simulated values of the R20 index for the 
year 1999 (in days) 

The contribution of elevation to the prediction of the R20 index values is difficult to assess, 

especially by just observing the maps of 1974 and 1999. The results of 1974 correspond to the 

year with the maximum regional correlation coefficient between the R20 index and elevation, 

thus the mountainous regions of the south were expected to exhibit a more pronounced pattern 

of heavy precipitation events. However, 1974 was the driest year of the 1970s (Costa et al., 

2008b), which might explain that difficulty. Furthermore, recall that local variations in the 

relationship between the frequency of extreme precipitation events and elevation were not 

accounted for in this exploratory study. 

When the maps from the entire study period are analyzed, it is much more evident that 

elevation contributes more to the prediction of the R20 index when the correlation coefficient 

is higher, as expected. However, the influence of dry and wet periods in the relationship 

between elevation and the index is not clear. 

5.3.1.4 Uncertainty evaluation 

Uncertainty was assessed by means of computing the standard deviation (Figure 5.11 and 

Figure 5.14), the coefficient of variation (Figure 5.12 and Figure 5.15) and the inter-quartile 

range (Figure 5.13 and Figure 5.16) of the distribution of the 100 simulated values of the R20 

index at each simulated grid node, by year. 
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Figure 5.11 – Standard-deviation of the distribution of the 100 simulated values of the R20 index 
for the year 1974 (in days) 

 

Figure 5.12 – Coefficient of variation of the distribution of the 100 simulated values of the R20 
index for the year 1974 (in %) 
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Figure 5.13 – Inter-quartile range of the distribution of the 100 simulated values of the R20 
index for the year 1974 (in days) 

As expected, the region where the distribution of the R20 index has greater variability, thus 

more uncertainty, is in the northern part of the maps, corresponding to a region less densely 

sampled. This is especially evident in the maps of the standard-deviation and inter-quartile 

range. 

 

Figure 5.14 – Standard-deviation of the distribution of the 100 simulated values of the R20 index 
for the year 1999 (in days) 
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Figure 5.15 – Coefficient of variation of the distribution of the 100 simulated values of the R20 
index for the year 1999 (in %) 

 

Figure 5.16 – Inter-quartile range of the distribution of the 100 simulated values of the R20 
index for the year 1999 (in days) 

The coefficient of variation provides a relative measure of the dispersion of variable's values 

regardless of their units. Hence, the maps of the coefficient of variation are particularly useful 

because they allow to: compare the uncertainty of the R20 index in different years; compare 

the uncertainty of R20 with other indices, whenever the same inference methodology is used; 

and compare the uncertainty of R20 using different inference methodologies. 
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5.3.2 Space-time models 

5.3.2.1 Local correlation models 

An exploratory evaluation of the relationships between the extreme precipitation indices and 

physiographic features (elevation and distance to the coastline) was made by averaging each 

index at each station, and by computing afterwards the Pearson's correlation coefficient 

between those values and secondary data (Table 5.4). Elevation was measured by the actual 

station's altitude and by the station's grid point elevation (smoothed elevation). This regional 

analysis shows that, in general, the correlation is slightly stronger for the smoothed elevation 

than the actual one. Other studies on this subject concluded likewise (e.g., Nicolau, 2002; 

Diodato, 2005). 

The relationships between the dryness index AII and the secondary data are very weak, thus 

the secondary attributes are less useful to improve this index interpolation. Therefore, the 

computational effort required to incorporate exhaustive secondary information in the coDSS 

algorithm does not payoff, and DSS was used instead. 

Table 5.4 – Linear correlation between the indices and physiographic features 

Index Stations' altitude Smoothed elevation Distance to the coastline according to 
the SW direction 

R5D 0.43 0.49 −0.34 

R30 0.45 0.52 −0.33 

AII 0.10 0.07 −0.01 

Although the regional relationships between the wetness indices (R5D and R30) with the 

distance to the coastline were weak, local correlation models were developed using the DSS 

algorithm (Appendix V). The local correlation models show extensive patterns of negative 

correlations and very weak to moderate relationships between the wetness indices with the 

distance to the coastline. The higher positive correlations occur in mountainous areas of the 

south. These results confirm that using the distance to the coastline, as an explanatory 

variable, may be less useful for the interpolation of the wetness indices than using elevation. 

Figure 5.17 shows regional correlations between the wetness indices with elevation and 

distance to the coastline by decade. For each index, the relationships evolution is identical 

along decades. 
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Figure 5.17 – Regional correlations between the wetness indices with elevation and distance to 
the coastline, by decade 

The relationships of the wetness indices (R5D and R30) with smoothed elevation are 

regionally moderate (Table 5.4) but stronger than with other attributes, as expected from the 

analysis performed by Nicolau (2002). Hence, these relationships were analysed further and 

used to produce the gridded datasets of the wetness indices. 

Plots of elevation against R5D and R30 values are given in Figure 5.18 and Figure 5.19, 

respectively. The coefficient of determination, r2, is small in both cases and so there is little 

evidence of a (global) linear relationship between elevation and extreme precipitation, as 

expected (Lloyd, 2005). 
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Figure 5.18 – Plot of elevation against R5D values calculated within 1940/99 
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Figure 5.19 – Plot of elevation against R30 values calculated within 1940/99 

Moreover, the correlations for elevation against the indices values is not constant through 

time (Figure 5.20), but rather shows negative trends during the study period, although not 

statistically significant, as expected from the R20 index analysis (Section 5.3.1). The number 

of stations used in the computation of these correlations ranges from 19 (in 1940) to 93 (in 

1991 and 1992), and is always less than 40 before 1980. Because of the sparse coverage of 

meteorological stations in some areas, especially until the 1980s (Table 5.5), the local 

relationships between elevation and extreme precipitation were assessed by decade. 
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Figure 5.20 – Regional correlations between the wetness indices and elevation, by year 

Table 5.5 – Distribution of weather stations (with records within each decade) by elevation 
classes, and radii of the search neighbourhoods used to calculate the local correlations 

Elevation (m) 
Decade 

< 140 140 – 280 281 – 420 421 – 560 561 – 700 
Radius (m)

1940/49 9 13 2 2 1 65000 

1950/59 16 17 3 2 1 50000 

1960/69 16 20 2 2 1 50000 

1970/79 17 18 2 2 1 40000 

1980/89 31 43 17 1 2 35000 

1990/99 31 44 16 1 2 35000 

The coDSS algorithm uses a different correlation model between the wetness indices and 

elevation within each decade. In order to determine these models, first, the relationship 

between elevation and precipitation was assessed locally by computing, for each decade, 

Pearson's correlation coefficients using stations' data falling within a circle centred at each 

station's location. As in earlier decades meteorological stations are scarce, larger radii were 

used (Table 5.5). 

Afterwards, the DSS algorithm was applied to interpolate the local correlations by decade, 

and 50 simulated maps of local correlations were obtained for each index. These procedures 
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used space-time spherical variograms of the local correlations, where the spatial dimension 

was modelled as isotropic. For the R5D index, the estimated range of the spatial dimension 

was 110000 meters, the range of the temporal dimension was 6 decades, and the estimated sill 

was 0.053. For the R30 index, the estimated range of the spatial dimension was 130000 

meters, the range of the temporal dimension was 6 decades, and the estimated sill was 0.077. 

Finally, the correlation models were determined by computing the mean of the distribution of 

50 simulated values at each grid node, by decade (Figure 5.21 and Figure 5.22). 
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Figure 5.21 – Local correlation models between elevation and R5D values for each decade 
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Figure 5.22 – Local correlation models between elevation and R30 values for each decade 



SP A C E-T I M E D Y N A M I C S  O F  P R E C I P I TA T I O N  E X T R E M E S 

 251

The estimated correlations between elevation and the R5D index range from very weak 

(−0.21) to moderately strong (0.72) across the region and along decades, while for the R30 

index the space-time variability is greater since correlations range from −0.45 to 0.86. In the 

1940s, the R5D correlations range from −0.18 to 0.65 across the study region, whereas for 

R30 they range from −0.28 to 0.77. The correlation models of this decade show an unrealistic 

pattern of correlations on the west of the region, north of Algarve, caused by the scarce 

number of available stations. Accordingly, the variability associated with estimated 

correlations over this area is also high. Nevertheless, they correspond to moderate values of 

approximately 0.50, and so the contribution of elevation to the estimation of the indices will 

also be moderate. The correlation models of the 1950s exhibit a more realistic pattern, with 

correlations ranging from −0.17 to 0.67 for R5D, and from −0.31 to 0.83 for R30. The 

correlation models of the 1960s also show a realistic pattern of correlations, although the west 

and northeast areas present high variability. Similarly, the 1970s models are realistic but with 

very high variability within the northeast region. Because of the higher density of stations, the 

correlation models of the 1980s and 1990s exhibit much less variability than the previous 

ones. 

These results suggest that using elevation as a secondary variable in estimation will increase 

the accuracy of estimates in some locations, i.e. those mountainous areas where correlations 

are large (e.g. on the west of Algarve and on the northeast of the study region). In contrast, in 

places where correlations are small univariate interpolators (e.g., DSS) are likely to provide 

estimates as accurate as the ones provided by coDSS, but with less computational effort. 

5.3.2.2 Space-time continuity of extreme precipitation 

Variograms were calculated according to Equation (5.2). In this study, we chose exponential 

models that capture the major spatial features of the attributes under study within each decade. 

The spatial variability is assumed identical in all directions (i.e. isotropic) within each decade. 

The parameters for each exponential variogram of the R5D and R30 indices, used in the 

coDSS algorithm, are summarized in Table 5.6 and Table 5.7, respectively. For the AII index, 

the parameters for each exponential variogram used in the DSS algorithm are summarized in 

Table 5.8. 

In what concerns the temporal component, there are no relevant tendencies. However, the 

range of the models' spatial component shows a strong increase in the spatial continuity of 
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both the flood indicator (R5D) and the frequency of extremely heavy precipitation events 

(R30) on the last two decades. These findings are consistent with the preliminary results of 

the exploratory study for the R20 index (Table 5.3 of Section 5.3.1.2), and of Costa et al. 

(2008b). 

Table 5.6 – Parameters of the space-time exponential variograms for the R5D index, by decade 
(Durão et al., 2007) 

Decade Spatial range 
(m) 

Temporal range 
(years) Sill 

1940-49  85000 4.5  2923.364 

1950-59 100000 1.0  2075.247 

1960-69  70000 4.0  1263.250 

1970-79  70000 5.0  1543.205 

1980-89 150000 4.5  2075.301 

1990-99 165000 1.3  2803.646 

Table 5.7 – Parameters of the space-time exponential variograms for the R30 index, by decade 
(Durão et al., 2007) 

Decade Spatial range 
(m) 

Temporal range 
(years) Sill 

1940-49  40000 2.5  13.314 

1950-59  50000 1.3  8.561 

1960-69  65000 1.5  9.981 

1970-79 100000 2.5  9.510 

1980-89 145000 5.0  13.089 

1990-99 160000 4.5  8.984 

Table 5.8 – Parameters of the space-time exponential variograms for the AII index, by decade 

Decade Spatial range 
(m) 

Temporal range 
(years) Sill 

1940-49 90000 3.5 0.043 

1950-59 70000 3.5 0.020 

1960-69 80000 2 0.031 

1970-79 50000 3 0.027 

1980-89 70000 5 0.020 

1990-99 70000 2 0.022 
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The analysis of the fitted variogram models shows that their spatial ranges, which express the 

extent of spatial continuity of the phenomena, are generally increasing over the decades for 

the wetness indices (Figure 5.23). These results imply that the spatial patterns of extreme 

precipitation are becoming more homogenous over time, while the levels of local variability 

are decreasing. 
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Figure 5.23 – Spatial range of the variogram models fitted for each index 

The North Atlantic Oscillation (NAO) is one of the major large-scale atmospheric phenomena 

influencing the climate of Europe and the North Atlantic. In simple terms, the NAO 

corresponds to a large-scale meridional oscillation of atmospheric mass between the 

subtropical anticyclone near the Azores and the subpolar low pressure system near Iceland 

(Trigo et al., 2002). In its positive phase, the NAO corresponds to enhanced westerly flow 

over the North Atlantic and a northward shift of the mid latitude storm track (Scaife et al., 

2008). For positive NAO winter months, Central Europe and the Iberian Peninsula experience 

anomalously anticyclonic circulation and reduced precipitation, which are associated with 

reduced cloud cover (Trigo et al., 2002). 

Throughout the last two decades of the twentieth century, the northern centre of the NAO 

dipole (the Icelandic low) has moved closer to Scandinavia, consequently affecting the 

precipitation field over the Iberian Peninsula (Goodess and Jones, 2002; Trigo et al., 2004). 

The accumulation of positive modes of the NAO in winter during the last few decades is well 

documented, being evident since the 1970s and strengthened during the 1980s and 1990s 

(Trigo et al., 2002; Dünkeloh and Jacobeit, 2003; Scaife et al., 2008). 
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Scaife et al. (2008) determined the impact of changes in the NAO, such as that observed 

between the 1960s and 1990s, on the frequency of extreme weather events over Europe. Their 

conclusions were based on a set of experiments with a general circulation model and on 

observational data, which were used to compute a set of indices for temperature and 

precipitation20 extremes. Scaife et al. (2008) verified that changes in the NAO are likely to be 

responsible for much of the observed change in the frequency of above 90th percentile winter 

precipitation between the 1960s and 1990s over Europe. Moreover, the results from Goodess 

and Jones (2002) and Trigo et al. (2004) indicate that NAO–rainfall relationships tend to be 

stronger during the wet seasons of the last decades of the twentieth century in southern 

Portugal. 

Trigo et al. (2004) have assessed the impact of the NAO21 on the mean precipitation and river 

flow regimes for the three main international Iberian river basins (Douro in the north, Tejo in 

the centre, and Guadiana in the south). Their study focused on the wet season (Oct. – Apr.) 

and concluded that the impact of the NAO on precipitation is irregular, presenting a high 

inter-decadal variability. Generally, the correlation values increase from north to south over 

the whole 1923/98 period, thus being higher for the Guadiana basin than for the Tejo and 

Douro basins. Moreover, the most recent sub-period considered (1973/98) shows the highest 

correlation values (all of them significant at the 5% level) between the NAO index and 

average precipitation for November to February in the Guadiana basin. 

These results are consistent with those from a previous study addressing the large-scale 

influence of the NAO22 in the characteristics of Iberian rainfall (Goodess and Jones, 2002). 

The NAO–rainfall relationships are stronger over central Spain, and in southern Portugal 

during winter, and weaker along the northern and eastern coasts. Moreover, in winter, the 

relationships tend to be stronger during the most recent sub-period considered (1978/97). 

These changes in the NAO are likely to be responsible for the observed change of spatial 

continuity of extreme precipitation in southern Portugal, which is especially pronounced 

during the last two decades of the twentieth century (Figure 5.23). 

                                                 

20 The index used is based on the number of days above the 90th percentile. 
21 This formulation of the NAO index uses Gibraltar as the southern station. 
22 Goodess and Jones (2002) used the NCEP Gibraltar minus Reykjavik index. 
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5.3.3 Space-time scenarios for wet extremes 

Using the coDSS algorithm, a set of 100 equiprobable simulated realizations of the R5D and 

R30 indices was computed at each simulated grid node, by year. For illustration purposes, two 

equiprobable realizations of R5D, for 1945 and 1949, are shown in Figure 5.24. The space-

time inference was performed by means of computing the mean of those distributions, 

hereafter referred to as mean-maps or (space-time) scenarios. Uncertainty was assessed by 

means of computing the standard deviation (STD) and the coefficient of variation (CV) of the 

distribution of the 100 simulated values at each simulated grid node, by year. 

 

Figure 5.24 – Equiprobable simulated realizations of R5D for 1945 and 1949 
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For illustration purposes, the flood indicator (R5D) mean-maps of six years are shown in 

Figure 5.27, while Figure 5.28 and Figure 5.29 show their uncertainty evaluation measured by 

the standard deviation and the coefficient of variation, respectively. Likewise, six scenarios 

for the frequency of extreme precipitation events (R30) are shown in Figure 5.30, while 

Figure 5.31 and Figure 5.32 show their uncertainty evaluation measured by the standard 

deviation and the coefficient of variation, respectively. 

Although the correlation models for the 1940s seemed unrealistic, a visual inspection of all 

produced scenarios for those years reveals a rather realistic spatial pattern of extreme 

precipitation. On the other hand, the lack of precipitation data on the northeastern area makes 

the estimates more uncertain. For that reason, the extreme precipitation values were possibly 

less accurately estimated over that area in several years. In fact, as expected, one of the 

regions where the distribution of extreme precipitation shows greater variability, thus more 

uncertainty, is in the northern part of the maps, corresponding to regions less densely sampled 

in most years. This is especially evident in the maps of the standard deviation. Moreover, the 

scenarios for the last two decades of the twentieth century show less uncertainty than the 

previous ones because the availability of stations over the study region is considerably greater 

(Figure 5.2). 

The spatial uncertainty of the scenarios of both indices can be compared using the 

corresponding maps of the coefficient of variation. In order to summarize this information, 

probability maps of spatial uncertainty were computed as described in Section 5.2.5. Figure 

5.25 and Figure 5.26 show estimated local probabilities of the coefficient of variation of the 

scenarios produced for the R5D and R30 indices, respectively, to be greater than or equal to 

given thresholds. This analysis shows that the scenarios of the R30 index have greater 

variability over the study region than the scenarios of the R5D index. 

Only a few stations are located at medium (>400 m) and high elevations (Table 5.5), thus 

greater uncertainty would be expected at those regions. However, the uncertainty in the 

mountainous regions of the south is often small (Figure 5.25 and Figure 5.26), because of the 

use of elevation as secondary exhaustive information in the spatial interpolation procedure of 

the wetness indices. 

Several common spatial patterns can be observed in scenarios of both indices. In wetter years, 

the indices exhibit the highest values in mountainous regions of Algarve, especially over the 
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Monchique mountains, due to the greater influence of altitude there than in the rest of the 

study domain. For this reason, high values also appear over northeast areas in several years. In 

drier years, the spatial pattern of extreme precipitation is much smoother as estimates have 

less variability over the study domain. 

As expected from the space-time continuity analysis of the wetness indices (Section 5.3.2.2), 

the spatial patterns of extreme precipitation are becoming more homogenous over time, while 

the levels of local variability are decreasing. This is especially noticeable in the maps of the 

last two decades of the twentieth century. 

 

Figure 5.25 – Probability of the uncertainty of the R5D index scenarios, measured by the 
coefficient of variation, to be greater than or equal to 25% 

 

Figure 5.26 – Probability of the uncertainty of the R30 index scenarios, measured by the 
coefficient of variation, to be greater than or equal to a) 25% and b) 50% 
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Figure 5.27 – Scenarios for the magnitude of extreme precipitation (R5D index) 
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Figure 5.28 – Uncertainty of the scenarios for the magnitude of extreme precipitation (R5D 
index) measured by the standard-deviation 
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Figure 5.29 – Uncertainty of the scenarios for the magnitude of extreme precipitation (R5D 
index) measured by the coefficient of variation 
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Figure 5.30 – Scenarios for the frequency of extreme precipitation (R30 index) 
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Figure 5.31 – Uncertainty of the scenarios for the frequency of extreme precipitation (R30 index) 
measured by the standard-deviation 
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Figure 5.32 – Uncertainty of the scenarios for the frequency of extreme precipitation (R30 index) 
measured by the coefficient of variation 
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5.3.3.1 Maps summarizing the space-time dynamics 

Using the annual gridded datasets produced, probability maps of extreme precipitation were 

computed as described in Section 5.2.5. In order to determine appropriate threshold values, 

the regional histograms of the indices and their basic statistics were calculated using the 

values from maps corresponding to the climate normal 1961/90 (Table 5.9). 

Table 5.9 – Basic statistics of the wetness indices computed from the maps of 1961–1990 

Regional statistics R5D index R30 index 
Mean  108.6  4.3 
Standard-deviation  28.3  2.3 
Skewness  0.98  1.45 
Kurtosis  2.24  4.22 
Quantiles   
 100% Max  229.4  23.0 
 99%  193.8  11.4 
 95%  160.2  8.3 
 90%  144.2  7.2 
 75% Q3  123.6  5.4 
 50% Median  105.4  3.8 
 25% Q1  89.5  2.6 
 10%  76.5  1.9 
 5%  68.6  1.5 
 1%  56.5  0.9 
 0% Min  23.2  0.0 

The probability maps of both wetness indices show similar spatial patterns of extreme 

precipitation. Hence, areas that are susceptible to frequent extreme rainfall events are also 

susceptible to the occurrence of heavy short-term rainfall events. The probability maps 

corresponding to threshold values equal to the medians of R5D and R30 (Figure 5.33a and 

Figure 5.34a, respectively) show that the mountainous regions of Algarve, the northeast area, 

as well as the west coast have high probability of extreme precipitation. On the other hand, 

the probability maps for the third quartiles of R5D and R30 (Figure 5.33b and Figure 5.34b, 

respectively) show that the most intense and more frequent rainfall events occur at the 

Algarve region, especially over the Monchique mountains, as expected. 
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Probability maps such as these are useful to identify regions at risk of water erosion caused by 

extreme precipitation events. A probability map could be combined with a vegetation cover 

map. This would allow the identification of regions at risk of water erosion corresponding to 

areas with little vegetation cover and high probability of extreme precipitation events. This 

could be a valuable improvement of the 'Erosion protection' map used to build the 'Vegetation 

quality index' used by the National Action Programme to Combat Desertification to identify 

desertification prone areas (Rosário, 2004b). 

 

Figure 5.33 – Probability of the magnitude of extreme precipitation (R5D index) to be equal or 
greater than fixed thresholds 

 

Figure 5.34 – Probability of the frequency of extreme precipitation (R30 index) to be equal or 
greater than fixed thresholds 
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The results from Section 4.3 on the regional correlation analysis between the wetness indices, 

based on 15 stations data, showed that they were moderately positively correlated with each 

other. Using the 1940/99 scenarios of R5D and R30, a map of local correlations between them 

was produced by computing the Pearson's correlation coefficient at each grid cell (Figure 

5.35). An interesting conclusion from this map is that increasing values of R5D through time 

entail increasing values of R30 in many areas that have low probabilities of extreme 

precipitation, and vice-versa. For example, many areas in the mountainous regions of Algarve 

show weak correlations between the frequency of heavy precipitation and the intensity of 

short-term rainfall events. 

 

Figure 5.35 – Local correlations between the R5D and R30 indices 

Local trend maps were computed using both parametric and nonparametric estimators of the 

trend slope, in order to compare their resulting spatial patterns. However, to assess the spatial 

patterns of the trend magnitude, the nonparametric trend map is more appropriate than the 

parametric one, because of the results from Chapter 4. The yearly estimates of the trends slope 

were calculated at each grid cell for 1940/99, through OLS and a nonparametric method 

(Section 5.2.5), using the R5D and R30 scenarios (Figure 5.36 and Figure 5.37, respectively). 

Both parametric and nonparametric approaches used to compute the trend slope reveal 

identical spatial patterns. The trend maps of both wetness indices also show similar spatial 

patterns. As expected from the trend analysis chapter, there is a pattern of weak, both negative 

and positive, trend signals of extreme precipitation over the study region. Most of the region 
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exhibits negative trends of extreme precipitation, and a small area in the northeast has the 

highest positive trends. 

 

Figure 5.36 – Local trends in the magnitude of extreme precipitation (R5D index) 

 

Figure 5.37 – Local trends in the frequency of extreme precipitation (R30 index) 

5.3.4 Space-time scenarios for dry extremes 

Using the DSS algorithm, a set of 100 equiprobable simulated realizations of the AII index 

was computed at each simulated grid node, by year. The space-time inference was performed 

by means of computing the mean of those distributions, hereafter referred to as mean-maps or 

(space-time) scenarios. Uncertainty was assessed by means of computing the standard 
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deviation (STD) and the coefficient of variation (CV) of the distribution of the 100 simulated 

values at each simulated grid node, by year. 

Six scenarios for AII are shown in Figure 5.39, while Figure 5.40 and Figure 5.41 show their 

uncertainty evaluation measured by the standard deviation and the coefficient of variation, 

respectively. In general, the dryness scenarios of the last two decades of the twentieth century 

have less uncertainty than earlier years because of the higher availability of data in recent 

times. Probability maps of spatial uncertainty were computed as described in Section 5.2.5. 

Figure 5.38 shows the estimated local probabilities of the scenarios' coefficient of variation to 

be greater than or equal to a given threshold. This analysis shows that the scenarios of the AII 

index have less variability over the study region than the scenarios of the wetness indices. 

 

Figure 5.38 – Probability of the uncertainty of the AII index scenarios, measured by the 
coefficient of variation, to be greater than or equal to 25% 

The south of continental Portugal, especially the Alentejo region, is a drought prone area 

characterized by scarce precipitation, little runoff and water availability. The occurrence of 

drought spells and scarce precipitation highly influence the productivity of rain fed agriculture 

in this region, where most of the country’s cereals are produced. 

The scenarios produced for the AII index clearly show drought and dry situations such as the 

extreme episodes of 1948/49 and 1980/81 that affected Portugal's territory (Trigo and 

DaCamara, 2000). The magnitude of aridity (lower values of AII) is higher in interior areas of 

Alentejo and eastern areas of Algarve in many years. 
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Figure 5.39 – Scenarios for the aridity magnitude (AII index) 
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Figure 5.40 – Uncertainty of the scenarios for the aridity magnitude (AII index) measured by the 
standard-deviation 
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Figure 5.41 – Uncertainty of the scenarios for the aridity magnitude (AII index) measured by the 
coefficient of variation 
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5.3.4.1 Maps summarizing the space-time dynamics 

Since lower values of the AII index indicate higher dryness, areas with highly negative 

correlations between AII and the wetness indices correspond to areas that are potentially more 

susceptible to land degradation caused by water erosion. For this reason, local correlation 

maps between AII and the wetness indices were produced, even though the correlations were 

expected to be weak. Figure 5.42 reveals higher correlations of AII with the frequency of 

extreme precipitation (R30) than with the R5D index. However, in Figure 5.42b, most of the 

correlation values are approximately equal to 0.3 over the study region, as expected. The 

strongest negative relationship between AII and extreme precipitation occurs in a small area 

of the northeast of the study region, for both wetness indices. Since it is a bordering area 

lacking data in many years, this result is highly uncertain. 

 

Figure 5.42 – Local correlations between AII and the wetness indices 

Using the annual gridded datasets, probability maps of extreme dryness were computed as 

described in Section 5.2.5. In order to determine appropriate threshold values, regional 

histograms of the AII index and their basic statistics were calculated using the values from 

maps corresponding to the climate normal 1961/90 (Table 5.10). The probability maps 

corresponding to threshold values equal to the median and the first quartile of AII (Figure 

5.43) show that the south coast and inland regions of southern Portugal are highly prone to 

dry conditions, and that the southeast area is extremely susceptible to drought and dryness. 
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Table 5.10 – Basic statistics of the dryness indices computed from the maps of 1961–1990 

Regional statistics CDD index AII index 
Mean    0.56 
Standard-deviation    0.12 
Skewness    0.11 
Kurtosis    0.22 
Quantiles   
 100% Max    1.02 
 99%    0.85 
 95%    0.75 
 90%    0.71 
 75% Q3    0.64 
 50% Median    0.56 
 25% Q1    0.48 
 10%    0.41 
 5%    0.37 
 1%    0.29 
 0% Min    0.09 

Figure 5.44 shows the 'Aridity index' map that has been used by the National Action 

Programme (NAP) to Combat Desertification (Rosário, 2004b). The 'Aridity index' map is 

one of the four composite indices used to build the susceptibility map of desertification of the 

NAP, and it should be an indicator of climate quality (Kosmas et al., 1999). Currently, the 

'Aridity index' map corresponds to the ratio of two maps: the annual average precipitation for 

the period 1959/60 – 1990/91 mapped through kriging using elevation as external drift, and 

the annual average potential evapotranspiration for the period 1961–1990 mapped through 

ordinary kriging. A visual comparison between the NAP's 'Aridity index' map (Figure 5.44) 

and the probability map corresponding to the median of AII (Figure 5.43a) allows to conclude 

that their spatial patterns are, in general, similar, but extremely dry areas of the southeast 

(Figure 5.43b) were not captured by the NAP's 'Aridity index'. 
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Figure 5.43 – Probability of the aridity magnitude (AII index) to be less than fixed thresholds 

 

Figure 5.44 – Aridity index used by the National Action Programme to Combat Desertification 
(Rosário, 2004b). Source data: Programa de Acção Nacional de Combate à Desertificação, 

http://panda.igeo.pt/pancd/ (retrieved: 14 May 2008). 

Yearly estimates of the AII trends slope were calculated at each grid cell for 1940/99, through 

OLS and a nonparametric method (Section 5.2.5). Both parametric and nonparametric 

approaches used to compute the trend slope reveal identical spatial patterns (Figure 5.45). As 

expected from the trend analysis chapter, there is a pattern of negative trend signals for the 

AII index over most of the study region, which indicates an increasing trend of dry conditions 

through time, especially in the centre and coastal areas of Algarve. 
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Note that the gridded trend maps of AII (Figure 5.45) should not be directly compared with 

the map obtained through ordinary kriging (Figure 4.2, p. 208), or at least they should be 

cautiously compared, because the analysis period is not the same, neither is the set of stations 

used in the spatial interpolation process. 

 

Figure 5.45 – Local decadal trends in the aridity magnitude (AII index) 

 





 

 

 

 

 

 

 

Chapter 6: CONCLUSION 

 

 

 





 

 

 

6. Conclusion 

The main purpose of this research work is to characterize the time and space-time dynamics 

of extreme precipitation indices, including both wet and dry extreme values, at local scales in 

the south of Portugal, where large areas have high susceptibility to desertification (Correia, 

2004; Rosário, 2004b). 

A set of 107 series of daily precipitation were compiled for homogeneity assessment (Chapter 

3). Wijngaard et al. (2003) state that, generally, a combination of statistical methods and 

methods relying on station history information is considered to be most effective to track 

down inhomogeneities. However, relative approaches are usually preferred, if the monitoring 

station network is dense enough, because such techniques account for regional climate 

changes and isolate the effects of irregularities in a candidate station by using data from 

reference stations. The methodology used for the homogeneity assessment of the Portuguese 

precipitation time series comprised both absolute and relative approaches. 

During the relative testing stage, we proposed an extension of the Ellipse test (described by 

Allen et al., 1998), named SUR+Ellipse test, which has the advantage of testing 

simultaneously several candidate series from the same climatic area, taking into account the 

contemporaneous relationship between them. Moreover, the results show that there is no 

apparent connection between the potential breaks magnitudes and the ability of the 

SUR+Ellipse test to identify them. Therefore, this technique is a valuable tool for 

homogeneity testing climate time series when the station network is dense enough. Like 

several traditional procedures, a limitation of this approach arises because of missing values 

and varying availability of stations through time, which makes difficult to select the series for 

each model. 

Additionally, a procedure based on geostatistical stochastic simulation was proposed for the 

homogenization of climate data (Costa et al., 2008a). The case study results indicate that this 

approach has a number of potential advantages over traditional ones. Geostatistical techniques 

allow dealing with the problem of missing values and varying availability of stations through 

time, by using different sets of neighbouring stations at different time periods (years, months, 

etc.), and by including shorter and non-complete records. Moreover, the geostatistical 
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approach avoids the iterative construction of composite reference series because it increases 

the contribution of records from closer stations, both in spatial and correlation terms, by 

accounting for the joint spatial and temporal dependence between observations. Multiple 

breaks can be detected simultaneously, thus this method might be less time consuming than 

other testing techniques that are used iteratively. Another advantage is that the geostatistical 

approach seems to be able to identify breakpoints near the start and end of the time series, 

while traditional approaches have less power in detecting them (Aguilar et al., 2003). 

Accordingly, the promising results from the case study open new research perspectives on the 

homogenization of climate time series. 

This study confirmed that using absolute approaches without metadata information makes it 

difficult to determine if changes or lack of changes in a station's time series result from 

inhomogeneities or simply from abrupt changes in the regional climate. The results of the 

different procedures implemented were used to develop an overall classification of the daily 

series using four classes: ‘useful’, ‘potentially useful’, ‘potentially suspect’ and ‘suspect’. The 

intermediate classes were established for stations that were just tested through absolute 

techniques, since it was not possible to find historic metadata support for the irregularities 

identified. Therefore, we strongly recommend that further efforts should be made to quality 

control those series. 

From the set of 107 stations compiled for homogeneity assessment, 15 stations with 

homogeneous daily records in the period 1955/99 were selected for temporal pattern analysis 

(Chapter 4). Six precipitation indices were then developed to investigate yearly trends and 

climate dynamics at the local scale in the south of Portugal. The three dryness indices (AII, 

CDD and FDD) and the three wetness indices (SDII, R5D and R30) describe moderate 

climate extremes which are relevant for the management of water resources and land use, 

modelling of erosion, and other applications for ecosystem and hydrological impact 

modelling. The existence of trends and other temporal patterns in the extreme precipitation 

indices were investigated and uncertainty about rainfall patterns evolution was assessed 

through regression models and smoothing techniques. 

The proposed AII index is particularly useful to provide information about land vulnerability, 

especially in agricultural areas such as those located at the south of Portugal. The statistically 

significant trends of this indicator in many stations and in the moving average series confirms 
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the desertification-related scenarios that reveal a tendency towards drier climatic conditions in 

the south of Portugal in the near future. The results of the other two dryness indices provide 

evidence that, in recent times, an increase in the length of the greatest dry spell entails a 

decrease in the mean frequency of dry events. 

The trend signals of the wetness indices were not statistically significant at the majority of 

stations. However, the moving window techniques revealed an increase in the short-term 

precipitation intensity (R5D index) during the last three decades of the twentieth century. 

Indices characterizing the precipitation intensity on wet days (SDII) and the frequency of 

extremely heavy precipitation events (R30) have cyclic patterns and different trend signals at 

the local scale, during the period 1955/99. The results also indicate that extreme precipitation 

variability and climate uncertainty are greater in recent times. 

For the spatial interpolation and uncertainty assessment of two indices of extreme 

precipitation (R5D and R30), we explored the application of direct sequential cosimulation, 

which allows incorporating covariates such as elevation. The methodology accounts for local 

data variability and incorporates space-time models that allow capturing long-term trends of 

extreme precipitation, and local changes in the relationship between elevation and extreme 

precipitation through time. For the dryness index (AII), direct sequential simulation was used 

instead, because no relevant correlations were found with physiographic features. 

Annual gridded datasets of the three precipitation indices were produced from 1940 to 1999 

using daily precipitation observations measured at 105 monitoring stations (Chapter 5). 

Uncertainty evaluations of the proposed scenarios were also produced for each year. The 

spatial resolution of the gridded datasets, 800 m × 800 m grid cells, allows for a detailed 

assessment of the space patterns of precipitation extremes. 

As expected, regions where the distribution of precipitation extremes shows greater 

variability, thus more uncertainty, correspond to regions less densely sampled. However, 

although there are few stations located at elevations higher than 420 m, the uncertainty in 

mountainous regions is noticeably small given that elevation was used as secondary 

exhaustive information in the spatial interpolation procedure of the wetness indices. The 

scenarios of the R30 index have greater variability over the study region than the scenarios of 

the R5D index, whereas the scenarios of the AII index are less uncertain than the wetness 

indices scenarios. 
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The results indicate that the relationship between elevation and the wetness indices varies 

locally and has decreased through time over the study region. The results also indicate that the 

spatial patterns of precipitation extremes have become more homogenous during the last 

decades of the twentieth century, which is consistent with the decreasing relationship with 

elevation. On the other hand, the extreme precipitation variability has increased in recent 

times in the south of Portugal (Chapter 4). This means that climate uncertainty is becoming 

greater in the time dimension, but the extreme phenomena are becoming more homogeneous 

in the spatial dimension. 

The probability maps of both wetness indices allow concluding that many areas that are 

susceptible to frequent extreme rainfall events are also susceptible to the occurrence of heavy 

short-term rainfall events. The most intense and more frequent rainfall events occur at the 

Algarve region, especially over the Monchique mountains. Accordingly, many areas of 

Algarve are at risk of water erosion and floods caused by extreme precipitation events. The 

gridded trend estimates of R5D and R30 show that most of the study region exhibits weak 

negative trend signals in extreme precipitation events, while few areas show weak positive 

signals, particularly the northeast. 

Regarding the dryness indices, the spatial inconsistencies found in CDD correspond to high 

variability at short distances caused by the split of a long dry spell into two dry spells due to 

one, or two, days with small amounts of daily rainfall in some stations. The proposed AII 

index is more robust in situations such as these because it is defined as the average 

precipitation of dry days. Therefore, the proposed AII index seems more appropriate than 

CDD to characterize drought and dry conditions in arid regions with high climatic variability 

such as the south of Portugal. 

The space-time analysis of AII indicates the southeast region as the most threatened by 

droughts and extreme dryness. These climatic factors amplify the risks of soil erosion and 

land degradation in the mountainous areas of this region, which are also prone to extreme 

rainfall events. Coastal areas of the south and many eastern inland areas are also subject to 

frequent periods of extreme dryness. Moreover, the gridded trend estimates of AII reveal a 

tendency towards drier climatic conditions in the coastal areas of the south and in the centre 

of the study region. 
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Increased aridity is a robust proximate cause of desertification, both indirectly through greater 

rainfall variability and directly through prolonged droughts (Geist and Lambin, 2004). 

Therefore, probability maps such as those computed for the AII are a promising contribution 

to improve the 'Aridity index' map that has been used by the National Action Programme to 

Combat Desertification (Rosário, 2004b). In fact, the current 'Aridity index' map is not fully 

appropriate to map the areas susceptible to desertification because it is based on average 

computations (Rosário, 2004b; Pereira et al., 2006). Therefore, this index does not account for 

droughts, which are part of the climate driving forces influencing desertification, and it does 

not capture the dynamic climatic features hidden behind "the means". 

Taking into consideration the methodology used and, in particular, the results of the AII 

index, we believe that our approach is a valuable contribution, not only to improve the 

knowledge on the time and space-time dynamics of precipitation extremes, but also to 

compute a new indicator of climate quality, which can be used to develop susceptibility maps 

of desertification. 

The number of studies analyzing space-time patterns of indices of precipitation extremes is 

very limited, because the large majority of studies only focus on the temporal linear trends of 

the indices. The direct sequential simulation and cosimulation, and the developed stochastic 

space-time models in particular, proved to be valuable procedures to improve the knowledge 

on the space-time dynamics of precipitation extremes and to provide uncertainty assessments 

of produced scenarios. 

The annual gridded datasets allow making available, for each monitoring stations' location, 

complete time series of the climate indices for the 1940/99 period, because the gaps in the 

series were infilled. Note that the direct sequential simulation algorithms provide exact 

interpolation values at locations with observed data. Moreover, an uncertainty evaluation of 

the infilled records is also available. These datasets of observation-based indices enable a 

variety of climate and impact studies, including detailed analyses of changes in the occurrence 

of extremes over the past 60 years. 

The results of this work open perspectives for new approaches on the analysis of extreme 

climate events, particularly in the context of impact studies. 
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6.1 Limitations 

One of the specific aims of this thesis was to assess the homogeneity of the daily precipitation 

series in order to properly proceed with the research concerning its major objective. However, 

station history information was not available, at least to us, to support the absolute breaks 

detected. Further analysis using relative procedures had to be carried out because of this 

limitation. Procedures based on test iteration, such as the ones used, are computationally 

intensive and turned out to be time consuming and exacting work. Although a great deal of 

effort has been made to assess the homogeneity of the daily precipitation series, a significant 

number of them were not evaluated through relative testing techniques due to time constrains. 

Nevertheless, in Section 5.1, we discuss a number of arguments that should justify the use of 

a dataset that might contain several inhomogeneous records. 

Geostatistical simulation methods are powerful but complex and computationally intensive. 

The analysis of the 6000 equally probable maps that were simulated for R5D, R30 and AII, 

was limited by the computational power available at the time. For this reason, the summary 

maps were based on the mean-maps (space-time scenarios computed using the mean of the 

distribution of the simulated values: 100 for each year of 1940/99), rather than directly on the 

simulated ones. Further insights on the space-time dynamics of the indices could be revealed 

if the full set of gridded datasets was investigated. 

6.2 Recommendations for further research 

Three research questions emerge from this thesis, which point out directions for further 

research: 

 Can the geostatistical simulation approach be used for the homogenization of sub-

monthly climate data? 

Further investigation is required to develop procedures for the homogenization of sub-

monthly precipitation data (Aguilar et al., 2003; Wijngaard et al., 2003; Auer et al., 

2005). The geostatistical simulation approach seems to be a very promising procedure 

for this research field, as kriging techniques have proven to succeed in the estimation 

of missing daily precipitation records (e.g., Kyriakidis et al., 2004; Teegavarapu and 

Chandramouli, 2005; Carrera-Hernández and Gaskin, 2007). Moreover, multivariate 
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geostatistical simulation algorithms might be used for the homogenization of highly 

variable elements, such as precipitation, making use of information from explanatory 

physiographic variables (e.g. elevation). 

The inherently high (temporal and spatial) variability of precipitation makes 

homogenization of precipitation records more difficult to accomplish than other 

elements (e.g. temperature). Therefore, it is reasonably intuitive that the number of 

simulated realizations, used by the geostatistical approach to infer the local probability 

density functions (pdfs), should be higher for precipitation data than for temperature 

records. However, how many simulated realizations should be used to accurately infer 

the local pdfs? This and other issues require further investigation and open new 

perspectives on the homogenization of climate data. 

 What caused the increased spatial homogeneity found in the 'wetness' indices of 

precipitation extremes in the last decades of the twentieth century? Are there other 

regions, or countries, experiencing these changes? 

Changes in the North Atlantic Oscillation (Goodess and Jones, 2002; Haylock and 

Goodess, 2004; Trigo et al., 2004; Rodrigo and Trigo, 2007; Scaife et al., 2008) are 

likely to be responsible for the observed changes in the extreme precipitation indices in 

southern Portugal, especially during the last two decades of the twentieth century. 

Nevertheless, other factors such as land cover and land use changes should be 

considered. Further research on this subject is clearly required. 

 Is the CDD index definition robust enough so that it can be appropriately used in 

climate change analysis, or impact studies, in other dryland regions? 

The spatial inconsistencies found in the CDD index indicate that its definition is not 

robust in highly variable climates such as the one of the south of Portugal. 

Accordingly, its use may not be appropriate in other Mediterranean regions, or dryland 

regions, even though that limitation has never been reported in the literature, most 

likely, because the low density of monitoring stations did not allow a comprehensive 

spatial analysis for most of the studies. 

Sillmann and Roeckner (2008) verified that the ensemble-mean of the model-based 

CDD index overestimates the maximum length of dry spells evaluated by most of the 
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observation-based indices in southern Europe. In these regions, the model 

overestimates CDD by more than 20 days, except in the 1950s when the simulated 

CDD is closer to the observed one. Sillmann and Roeckner (2008) argue that the abrupt 

change in the simulated CDD is not a real effect but can be attributed to a changed 

masking of missing values in the data used in the observation-based index. Our results 

indicate that it could also be attributed to the lack of robustness of the CDD in those 

regions, thus further research on this subject should be pursued. 
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Table 1 – Characterization of the 107 daily precipitation series compiled for the homogenization analysis by location and elevation of the monitoring 
station, county, and type of network 

BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 

LOCATION_X in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

LOCATION_Y in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

ELEVATION 
in meters COUNTY TYPE OF 

NETWORK* 

ECA&D 666 Beja 223394.5376 116684.4 246 BEJA #N/A 

ECA&D 675 Lisboa Geofísica 111556.7641 194846.2847 77 LISBOA #N/A 

ECA&D 681 Tavira 242933.0733 16869.65469 25 TAVIRA #N/A 

ECA&D 709 Badajoz Talavera 313142.7172 213663.0688 185 (Spain) #N/A 

Arade 29I.01 São Barnabé 197300 43349 250 ALMODÔVAR Udométrica 

Arade 30F.01 Monchique 161964 38903 465 MONCHIQUE Climatológica 

Arade 30G.01 Alferce 168840 40724 328 MONCHIQUE Udométrica  

Arade 30H.04 Santa Margarida 195423 31419 250 LOULÉ Udométrica 

Ribeiras do Algarve 29F.01 Cimalhas 164425 44442 300 MONCHIQUE Udométrica 

Ribeiras do Algarve 29F.02 Foz do Farelo 157033 42626 170 MONCHIQUE Udométrica 

Ribeiras do Algarve 30E.01 Aljezur 141280 39022 48 ALJEZUR Udométrica 

Ribeiras do Algarve 30E.02 Marmelete 152454 38088 375 MONCHIQUE Udométrica 

Ribeiras do Algarve 30E.03 Barragem da Bravura 149795 25802 75 LAGOS Climatológica 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines 185072 31431 150 SILVES Udométrica 

Ribeiras do Algarve 30H.05 Paderne 193938 22171 80 ALBUFEIRA Udométrica 

Ribeiras do Algarve 30K.02 Picota 239012 22599 174 TAVIRA Climatológica 

Ribeiras do Algarve 30L.03 Faz-Fato 247829 29704 100 TAVIRA Udométrica 

Ribeiras do Algarve 31E.01 Lagos 151952 14907 14 LAGOS Udométrica 

Ribeiras do Algarve 31G.02 Porches 176158 16654 82 LAGOA Udométrica 

Ribeiras do Algarve 31H.02 Algoz 186533 20330 50 SILVES Climatológica 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 

LOCATION_X in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

LOCATION_Y in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

ELEVATION 
in meters COUNTY TYPE OF 

NETWORK* 

Ribeiras do Algarve 31J.01 São Brás de Alportel 220956 21486 325 SÃO BRÁS DE 
ALPORTEL Climatológica 

Ribeiras do Algarve 31J.04 Estoi 222088 12950 120 FARO Udométrica 

Ribeiras do Algarve 31K.01 Santa Catarina (Tavira) 230950.0732 20372.1926 182 TAVIRA Udométrica 

Ribeiras do Algarve 31K.02 Quelfes 228024.9285 9263.5465 25 OLHÃO Udométrica 

Mira 27G.01 Relíquias 168992 81421 230 ODEMIRA Udográfica 

Mira 28F.01 Odemira 154232 70390 70 ODEMIRA Udométrica 

Mira 28G.01 Barragem de Mira 172573 60474 160 ODEMIRA Climatológica 

Mira 28H.01 Aldeia de Palheiros 189287 70856 210 OURIQUE Udográfica 

Mira 28H.03 Santana da Serra 185391 59177 200 OURIQUE Udométrica 

Mira 29G.01 Sabóia 167726 58240 65 ODEMIRA Udométrica 

Mira 29I.02 Santa Clara-a-Nova 199245 57531 321 ALMODÔVAR Climatológica 

Sado 21G.01 Vendas Novas 170849 188718 150 VENDAS NOVAS Udométrica 

Sado 22E.01 Águas de Moura 151088 179501 10 PALMELA Udométrica 

Sado 22F.03 Moinhola 157331 178972 39 VENDAS NOVAS Climatológica 

Sado 22H.02 Santiago do Escoural 196954 174820 243 MONTEMOR-O-NOVO Udométrica 

Sado 23E.01 Comporta 143060 156704 10 ALCACÉR DO SAL Climatológica 

Sado 23F.01 Montevil 157369 158867 5 ALCACÉR DO SAL Udométrica 

Sado 23G.01 Barragem de Pego do Altar 177106 161408 60 ALCACÉR DO SAL Climatológica 

Sado 23I.01 Alcáçovas 198404 158138 215 VIANA DO ALENTEJO Udométrica 

Sado 24F.01 Grândola 162743 134788 91 GRANDOLA Climatológica 

Sado 24H.02 Barragem do Vale do Gaio 186730 142423 30 ALCACÉR DO SAL Climatológica 

Sado 24I.01 Viana do Alentejo 211058 151269 230 VIANA DO ALENTEJO Climatológica 

Sado 24I.03 Barragem de Odivelas 201320 135012 114 FERREIRA DO 
ALENTEJO Climatológica 

Sado 24J.02 Alvito 212017 143284 210 ALVITO Udométrica 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 

LOCATION_X in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

LOCATION_Y in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

ELEVATION 
in meters COUNTY TYPE OF 

NETWORK* 

Sado 25G.01 Azinheira Barros 176453 120245 81 SANTIAGO DO CACÉM Udométrica 

Sado 25I.01 Ferreira do Alentejo 201786 121260 123 FERREIRA DO 
ALENTEJO Udométrica 

Sado 26F.02 Barragem de Campilhas 157018 96675 110 SANTIAGO DO CACÉM Climatológica 

Sado 26I.01 Santa Vitória 209478 110566 153 BEJA Udométrica 

Sado 26I.02 Barragem do Roxo 204402 107509 148 ALJUSTREL Climatológica 

Sado 26I.03 Aljustrel 197000 100109 223 ALJUSTREL Udométrica 

Sado 27G.02 Garvão (Montinho) 182225 83232 110 OURIQUE Udométrica 

Sado 27H.01 Panóias 184805 87851 175 OURIQUE Udométrica 

Sado 27H.02 Barragem do Monte da Rocha 186415 84519 140 OURIQUE Climatológica 

Guadiana 18N.01 São Julião 271329 260536 530 PORTALEGRE Udométrica 

Guadiana 18N.02 Alegrete 270085 252259 458 PORTALEGRE Udográfica 

Guadiana 19N.01 Arronches 273709 239307 300 ARRONCHES Udométrica 

Guadiana 19N.02 Santa Eulália 276621 226474 273 ELVAS Udométrica 

Guadiana 19N.03 Esperança 281064 243698 350 ARRONCHES Udométrica 

Guadiana 19O.02 Barragem do Caia 286079.6492 226417.5134 230 CAMPO MAIOR Climatológica 

Guadiana 19O.03 Degolados 287694 232758 265 CAMPO MAIOR Udométrica 

Guadiana 20O.02 Caia (M. Caldeiras) 294308 212540 170 ELVAS Udométrica 

Guadiana 21K.01 Azaruja 231177 192858 270 ÉVORA Udométrica 

Guadiana 21M.01 Vila Viçosa 261915 202197 370 VILA VIÇOSA Udométrica 

Guadiana 21M.02 Alandroal 263421 191939 350 ALANDROAL Udométrica 

Guadiana 21N.01 Juromenha 277509 197214 206 ALANDROAL Udométrica 

Guadiana 22L.01 Redondo 250838 186792 315 REDONDO Udométrica 

Guadiana 22L.02 Santa Susana 241375 178781 225 REDONDO Udométrica 

Guadiana 22M.01 Santiago Maior 256675 175205 324 ALANDROAL Udométrica 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 

LOCATION_X in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

LOCATION_Y in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

ELEVATION 
in meters COUNTY TYPE OF 

NETWORK* 

Guadiana 23K.01 São Manços 233660 165609 195 ÉVORA Udométrica 

Guadiana 23L.01 Reguengos 252936 161950 210 REGUENGOS 
MONSARAZ Udográfica 

Guadiana 24J.03 Cuba 221599 133036 160 CUBA Udométrica 

Guadiana 24K.01 Portel 237180 148849 315 PORTEL Udométrica 

Guadiana 24K.02 Vidigueira 228838 137499 190 VIDIGUEIRA Udométrica 

Guadiana 24N.01 Amareleja (D.G.R.N.) 279148 138512 192 MOURA Udométrica 

Guadiana 25L.01 Pedrogão do Alentejo 242611 127877 140 VIDIGUEIRA Udométrica 

Guadiana 25N.01 Sobral da Adiça 276624 117118 200 MOURA Udométrica 

Guadiana 25O.01 Santo Aleixo da Restauração 286353 122242 280 MOURA Udométrica 

Guadiana 25P.01 Barrancos 299228 130067 380 BARRANCOS Udométrica 

Guadiana 26J.04 Albernoa 215041 98920 150 BEJA Udométrica 

Guadiana 26K.01 Salvada 230364 106578 178 BEJA Udométrica 

Guadiana 26L.01 Serpa 246522 108566 190 SERPA Udométrica 

Guadiana 26L.02 Santa Iria 250666 101838 201 SERPA Udométrica 

Guadiana 26M.01 Herdade de Valada 261513 108819 230 SERPA Climatológica 

Guadiana 27I.01 Castro Verde 203510 81240 180 CASTRO VERDE Udográfica 

Guadiana 27J.01 São Marcos da Ataboeira 217105 81966 174 CASTRO VERDE Udométrica 

Guadiana 27J.02 Corte Pequena 224709 86826 167 MÉRTOLA Udométrica 

Guadiana 27J.03 Vale de Camelos 223346.0959 92495.32 135 MÉRTOLA Climatológica 

Guadiana 27K.01 Algodôr 230122 86104 163 MÉRTOLA Udométrica 

Guadiana 27K.02 Corte da Velha 234191 79152 125 MÉRTOLA Udométrica 

Guadiana 28I.01 Almodôvar 205778 60184 270 ALMODÔVAR Udométrica 

Guadiana 28J.01 Alcaria Longa 223936 66105 119 MÉRTOLA Udográfica 

Guadiana 28J.03 Santa Barbara de Padrões 213394 74313 250 CASTRO VERDE Udométrica 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 

LOCATION_X in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

LOCATION_Y in 
meters 

(IgeoE - coordinate 
system from the 

Portuguese Military 
System) 

ELEVATION 
in meters COUNTY TYPE OF 

NETWORK* 

Guadiana 28K.01 São João dos Caldeireiros 230321 71861 170 MÉRTOLA Udométrica 

Guadiana 28K.02 Álamo 239364 68199 150 MÉRTOLA Udométrica 

Guadiana 28L.01 Mértola 241590 74623 65 MÉRTOLA Udométrica 

Guadiana 29J.05 Guedelhas 216221 58009 290 ALMODÔVAR Udométrica 

Guadiana 29K.01 Martim Longo 232311 52167 290 ALCOUTIM Climatológica 

Guadiana 29K.03 Malfrades 241199 44468 255 ALCOUTIM Udométrica 

Guadiana 29K.04 Penedos 229758 57923 265 MÉRTOLA Udométrica 

Guadiana 29L.01 Pereiro 247058 52823 240 ALCOUTIM Udométrica 

Guadiana 29L.03 Monte dos Fortes 247126 40799 65 CASTRO MARIM Udométrica 

Guadiana 29M.01 Alcoutim 258470 55670 39 ALCOUTIM Udométrica 

Guadiana 30I.02 Sobreira 206386 36970 475 LOULÉ Udométrica 

Guadiana 30J.01 Barranco do Velho 217163 29771 475 LOULÉ Udométrica 

Guadiana 30J.02 Catraia 217595.8648 35135.8264 420 LOULÉ Udográfica 

Guadiana 30K.01 Mercador 233856 34816 330 TAVIRA Udométrica 

Guadiana 30L.04 Alcaria (Castro Marim) 255156 25156 48 CASTRO MARIM Udométrica 

* 'Udométrica' means that the station only measures precipitation through accumulative precipitation gauges; 'udográfica' means that  the station only measures precipitation through 
recording raingauges; and 'climatológica' means that the station measures precipitation using both instrumentation, and measures other climate variables as well. 
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Table 2 – Characterization of the 107 daily precipitation series compiled for the homogenization analysis by date of beginning of the precipitation 
measurements at the monitoring station, available data periods, and series length (years lacking a maximum of 5% of data) 

BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 
BEGINNING OF 
PRECIPITATION 

MEASUREMENTS

BEGINNING 
OF 

RECORDS 

ENDING 
OF 

RECORDS

NUM. OF DAILY 
PRECIPITATION 

RECORDS 

SERIES 
LENGTH 

(years lacking 
a maximum of 

5% of data) 

ECA&D 666 Beja #N/A 01/01/1941 31/12/1999 21549 59 

ECA&D 675 Lisboa Geofísica #N/A 01/01/1941 31/12/1999 21549 59 

ECA&D 681 Tavira #N/A 01/01/1941 31/12/1994 19723 54 

ECA&D 709 Badajoz Talavera #N/A 01/01/1955 31/08/2001 17045 46 

Arade 29I.01 São Barnabé 01/10/1964 01/10/1964 07/11/2002 13917 36 

Arade 30F.01 Monchique 04/02/1932 04/02/1932 31/01/1999 24469 55 

Arade 30G.01 Alferce 19/08/1958 19/08/1958 30/09/2000 15536 41 

Arade 30H.04 Santa Margarida 01/10/1964 01/10/1964 30/09/2000 13242 33 

Ribeiras do Algarve 29F.01 Cimalhas 01/10/1980 01/10/1980 31/12/1999 7031 19 

Ribeiras do Algarve 29F.02 Foz do Farelo 01/10/1980 01/10/1980 30/09/2000 7641 19 

Ribeiras do Algarve 30E.01 Aljezur 08/10/1931 08/10/1931 30/09/2000 25447 68 

Ribeiras do Algarve 30E.02 Marmelete 01/10/1959 01/10/1983 30/09/2000 15312 16 

Ribeiras do Algarve 30E.03 Barragem da Bravura 01/10/1933 01/10/1955 30/09/2001 24837 45 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines 01/10/1931 01/10/1990 30/09/1999 25416 8 

Ribeiras do Algarve 30H.05 Paderne 01/10/1957 01/10/1983 30/09/2000 15707 16 

Ribeiras do Algarve 30K.02 Picota 01/10/1933 01/10/1955 30/09/2000 24777 41 

Ribeiras do Algarve 30L.03 Faz-Fato 01/10/1945 01/10/1955 30/09/2000 20333 44 

Ribeiras do Algarve 31E.01 Lagos 01-10-1864 01/01/1956 31/03/2001 36404 44 

Ribeiras do Algarve 31G.02 Porches 01/10/1979 01/10/1979 30/09/1999 7976 19 

Ribeiras do Algarve 31H.02 Algoz 01/09/1980 01/09/1980 31/12/1996 8007 16 

Ribeiras do Algarve 31J.01 São Brás de Alportel 01/10/1900 01/10/1984 31/08/2001 6178 16 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 
BEGINNING OF 
PRECIPITATION 

MEASUREMENTS

BEGINNING 
OF 

RECORDS 

ENDING 
OF 

RECORDS

NUM. OF DAILY 
PRECIPITATION 

RECORDS 

SERIES 
LENGTH 

(years lacking 
a maximum of 

5% of data) 

Ribeiras do Algarve 31J.04 Estoi 01/10/1979 01/10/1983 30/09/2000 7610 16 

Ribeiras do Algarve 31K.01 Santa Catarina (Tavira) 01/10/1959 01/10/1983 30/09/2000 15281 16 

Ribeiras do Algarve 31K.02 Quelfes 01/08/1980 01/08/1980 30/09/1999 7702 15 

Mira 27G.01 Relíquias 01/11/1931 01/11/1931 30/09/2001 25537 67 

Mira 28F.01 Odemira 01/11/1931 01/11/1931 30/09/1995 23345 61 

Mira 28G.01 Barragem de Mira 01/10/1965 01/10/1969 30/06/2001 11596 23 

Mira 28H.01 Aldeia de Palheiros 01/09/1931 01/09/1931 30/09/1997 25204 65 

Mira 28H.03 Santana da Serra 09/12/1935 09/12/1935 31/12/2000 23765 62 

Mira 29G.01 Sabóia 01/10/1931 01/10/1931 30/09/1995 23376 62 

Mira 29I.02 Santa Clara-a-Nova 01/10/1979 05/07/1980 30/11/2000 7454 19 

Sado 21G.01 Vendas Novas 01/09/1911 01/09/1911 31/03/2000 32355 46 

Sado 22E.01 Águas de Moura 01/10/1931 01/10/1983 27/02/2002 6725 15 

Sado 22F.03 Moinhola 01/10/1934 01/10/1972 31/01/2001 10350 27 

Sado 22H.02 Santiago do Escoural 21/11/1931 21/11/1931 31/12/2000 25224 67 

Sado 23E.01 Comporta 01/04/1934 01/01/1934 01/05/2001 24593 50 

Sado 23F.01 Montevil 01/10/1944 01/10/1983 31/12/2000 6302 17 

Sado 23G.01 Barragem de Pego do Altar 01/10/1933 01/02/1980 31/12/2000 7640 21 

Sado 23I.01 Alcáçovas 14/11/1931 14/11/1931 31/12/2000 25251 66 

Sado 24F.01 Grândola 01/10/1931 01/10/1972 31/01/2001 10350 28 

Sado 24H.02 Barragem do Vale do Gaio 01/10/1938 01/10/1979 30/06/2001 7944 21 

Sado 24I.01 Viana do Alentejo 01/12/1933 01/12/1933 31/01/2001 24534 38 

Sado 24I.03 Barragem de Odivelas 06/11/1973 06/11/1973 31/12/2000 9918 27 

Sado 24J.02 Alvito 01/10/1939 01/10/1983 31/12/2000 6302 16 

Sado 25G.01 Azinheira Barros 09/03/1950 09/03/1950 31/12/2000 18561 50 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 
BEGINNING OF 
PRECIPITATION 

MEASUREMENTS

BEGINNING 
OF 

RECORDS 

ENDING 
OF 

RECORDS

NUM. OF DAILY 
PRECIPITATION 

RECORDS 

SERIES 
LENGTH 

(years lacking 
a maximum of 

5% of data) 

Sado 25I.01 Ferreira do Alentejo 08/11/1931 08/11/1931 31/12/2000 25257 68 

Sado 26F.02 Barragem de Campilhas 01/10/1952 01/10/1955 31/01/1997 16408 26 

Sado 26I.01 Santa Vitória 01/10/1949 01/10/1983 31/12/2000 6302 17 

Sado 26I.02 Barragem do Roxo 10/07/1958 10/07/1958 31/12/2000 15516 39 

Sado 26I.03 Aljustrel 13/11/1931 13/11/1931 31/12/2000 25252 64 

Sado 27G.02 Garvão (Montinho) 01/10/1978 01/04/1979 30/09/1995 6027 15 

Sado 27H.01 Panóias 01/10/1933 01/10/1955 30/09/1995 14610 39 

Sado 27H.02 Barragem do Monte da Rocha 11/01/1980 11/01/1980 30/09/1995 7540 15 

Guadiana 18N.01 São Julião 15/04/1980 15/04/1980 31/03/2000 7291 16 

Guadiana 18N.02 Alegrete 10/03/1980 10/03/1980 31/03/2000 7327 19 

Guadiana 19N.01 Arronches 01/09/1931 01/09/1931 31/03/2000 25050 68 

Guadiana 19N.02 Santa Eulália 01/10/1948 01/10/1982 31/03/2000 6392 17 

Guadiana 19N.03 Esperança 12/10/1979 12/10/1979 31/03/2000 7477 16 

Guadiana 19O.02 Barragem do Caia 13/01/1963 13/01/1964 31/07/2001 13715 35 

Guadiana 19O.03 Degolados 01/10/1980 01/10/1983 31/03/2000 6027 15 

Guadiana 20O.02 Caia (M. Caldeiras) 25/10/1979 25/10/1979 31/01/2000 7404 17 

Guadiana 21K.01 Azaruja 01/09/1931 01/10/1943 30/09/1983 20607 39 

Guadiana 21M.01 Vila Viçosa 01/10/1930 01/10/1980 31/07/2001 7609 20 

Guadiana 21M.02 Alandroal 01/09/1931 01/10/1983 31/03/2000 6027 16 

Guadiana 21N.01 Juromenha 01/09/1931 01/09/1931 31/03/2000 25050 45 

Guadiana 22L.01 Redondo 01/09/1931 01/10/1944 30/09/1983 19967 38 

Guadiana 22L.02 Santa Susana 27/03/1949 27/03/1949 31/03/2000 18633 50 

Guadiana 22M.01 Santiago Maior 01/04/1949 01/10/1983 31/03/2000 6027 15 

Guadiana 23K.01 São Manços 07/04/1942 07/04/1942 31/12/2000 21454 57 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 
BEGINNING OF 
PRECIPITATION 

MEASUREMENTS

BEGINNING 
OF 

RECORDS 

ENDING 
OF 

RECORDS

NUM. OF DAILY 
PRECIPITATION 

RECORDS 

SERIES 
LENGTH 

(years lacking 
a maximum of 

5% of data) 

Guadiana 23L.01 Reguengos 01/10/1930 01/10/1984 31/01/2001 5967 15 

Guadiana 24J.03 Cuba 01/10/1930 01/10/1985 30/09/1999 5206 13 

Guadiana 24K.01 Portel 01/10/1938 01/10/1983 30/09/2000 6210 16 

Guadiana 24K.02 Vidigueira 01/10/1948 01/10/1983 31/12/2000 6302 17 

Guadiana 24N.01 Amareleja (D.G.R.N.) 01/10/1930 01/10/1983 31/12/2000 6302 17 

Guadiana 25L.01 Pedrogão do Alentejo 01/06/1941 01/06/1941 31/12/2000 21764 59 

Guadiana 25N.01 Sobral da Adiça 01/08/1980 01/08/1980 31/12/2000 7458 19 

Guadiana 25O.01 Santo Aleixo da Restauração 01/10/1930 01/10/1931 31/12/2000 25295 67 

Guadiana 25P.01 Barrancos 01/10/1930 01/10/1985 30/09/1999 5206 13 

Guadiana 26J.04 Albernoa 01/10/1978 01/10/1983 31/12/2000 6302 17 

Guadiana 26K.01 Salvada 01/10/1957 01/10/1983 31/12/2000 6302 17 

Guadiana 26L.01 Serpa 01/10/1930 01/10/1984 31/01/2001 5967 16 

Guadiana 26L.02 Santa Iria 01/02/1980 01/02/1980 31/12/2000 7640 21 

Guadiana 26M.01 Herdade de Valada 01/10/1968 01/10/1968 31/12/2000 11780 30 

Guadiana 27I.01 Castro Verde 01/09/1931 01/09/1931 31/01/2001 25356 67 

Guadiana 27J.01 São Marcos da Ataboeira 01/10/1956 01/10/1983 31/12/2000 6302 17 

Guadiana 27J.02 Corte Pequena 01/10/1979 01/09/1983 30/09/1997 5967 11 

Guadiana 27J.03 Vale de Camelos 01/10/1986 01/02/1989 31/12/2000 4352 11 

Guadiana 27K.01 Algodôr 01/10/1930 01/10/1986 30/09/2000 5176 13 

Guadiana 27K.02 Corte da Velha 01/10/1979 01/10/1979 31/12/2000 7763 21 

Guadiana 28I.01 Almodôvar 01/10/1930 01/10/1983 31/12/2000 6302 17 

Guadiana 28J.01 Alcaria Longa 01/10/1949 01/10/1985 30/09/2000 5479 14 

Guadiana 28J.03 Santa Barbara de Padrões 01/10/1979 01/10/1979 31/12/2000 7763 21 

Guadiana 28K.01 São João dos Caldeireiros 01/10/1979 01/10/1983 30/09/2001 6575 17 
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BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME 
BEGINNING OF 
PRECIPITATION 

MEASUREMENTS

BEGINNING 
OF 

RECORDS 

ENDING 
OF 

RECORDS

NUM. OF DAILY 
PRECIPITATION 

RECORDS 

SERIES 
LENGTH 

(years lacking 
a maximum of 

5% of data) 

Guadiana 28K.02 Álamo 05/03/1980 05/03/1980 31/12/2000 7607 20 

Guadiana 28L.01 Mértola 01/10/1938 01/10/1983 31/12/2000 6302 17 

Guadiana 29J.05 Guedelhas 01/11/1979 01/11/1979 30/09/2000 7640 19 

Guadiana 29K.01 Martim Longo 01/10/1940 01/10/1984 07/08/2001 6155 16 

Guadiana 29K.03 Malfrades 01/03/1980 01/03/1980 30/09/2000 7855 19 

Guadiana 29K.04 Penedos 01/11/1980 01/11/1980 31/12/2000 7366 19 

Guadiana 29L.01 Pereiro 16/07/1957 16/07/1957 30/09/2000 16119 42 

Guadiana 29L.03 Monte dos Fortes 01/10/1979 01/10/1983 30/09/2000 6210 15 

Guadiana 29M.01 Alcoutim 11/03/1938 11/03/1938 30/09/2000 23155 61 

Guadiana 30I.02 Sobreira 11/05/1942 11/05/1942 30/09/2000 21664 56 

Guadiana 30J.01 Barranco do Velho 01/10/1934 01/10/1955 30/09/2000 16711 44 

Guadiana 30J.02 Catraia 01/09/1931 01/09/1931 31/05/1974 15614 42 

Guadiana 30K.01 Mercador 01/10/1959 01/10/1983 30/09/2000 6362 16 

Guadiana 30L.04 Alcaria (Castro Marim) 01/04/1946 01/04/1946 30/09/2000 20181 53 
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Table 1 – Summary results from the autocorrelation and normality tests applied to 107 series of annual wet day count (1 mm threshold) 

Durbin-Watson 
autocorrelation tests 

(5% level) 
NORMALITY TESTS 

(5% level) BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
1st 

Order 
2nd 

Order 
3rd 

Order 
Shapiro-

Wilk 
Kolmogorov-

Smirnov 
Cramer-

von 
Mises 

Anderson-
Darling 

ECA&D 666 Beja 1941-1999 Negative No No Normal Normal Normal Normal 

ECA&D 675 Lisboa Geofísica 1941-1999 No No No Normal Normal Normal Normal 

ECA&D 681 Tavira 1941-1994 No No No Normal Normal Normal Normal 

ECA&D 709 Badajoz Talavera 1955-2000 No Positive No Normal Normal Normal Normal 

Arade 29I.01 São Barnabé 1965-2000 Negative No No Normal Normal Normal Normal 

Arade 30F.01 Monchique 1933-1998 Negative No No Normal Normal Normal Normal 

Arade 30G.01 Alferce 1959-1999 No No No Normal Normal Normal Normal 

Arade 30H.04 Santa Margarida 1965-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 29F.01 Cimalhas 1981-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 29F.02 Foz do Farelo 1981-1999 Negative No No Normal Normal Normal Normal 

Ribeiras do Algarve 30E.01 Aljezur 1932-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30E.02 Marmelete 1984-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30E.03 Barragem da Bravura 1956-2000 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines 1991-1998 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30H.05 Paderne 1984-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30K.02 Picota 1957-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 30L.03 Faz-Fato 1956-1999 Negative - No Normal Normal Normal Normal 

Ribeiras do Algarve 31E.01 Lagos 1956-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 31G.02 Porches 1980-1998 No No No Reject Reject Reject Reject 

Ribeiras do Algarve 31H.02 Algoz 1981-1996 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 31J.01 São Brás de Alportel 1985-2000 No No No Normal Reject Reject Reject 
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Durbin-Watson 
autocorrelation tests 

(5% level) 
NORMALITY TESTS 

(5% level) BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
1st 

Order 
2nd 

Order 
3rd 

Order 
Shapiro-

Wilk 
Kolmogorov-

Smirnov 
Cramer-

von 
Mises 

Anderson-
Darling 

Ribeiras do Algarve 31J.04 Estoi 1984-1999 No No No Reject Reject Reject Reject 

Ribeiras do Algarve 31K.01 Santa Catarina (Tavira) 1984-1999 No No No Normal Normal Normal Normal 

Ribeiras do Algarve 31K.02 Quelfes 1982-1998 No No No Normal Normal Normal Normal 

Mira 27G.01 Relíquias 1932-2000 No Positive No Reject Normal Normal Normal 

Mira 28F.01 Odemira 1932-1994 No No No Reject Normal Normal Normal 

Mira 28G.01 Barragem de Mira 1970-1993 No No No Normal Normal Normal Normal 

Mira 28H.01 Aldeia de Palheiros 1932-1996 No No No Normal Normal Normal Normal 

Mira 28H.03 Santana da Serra 1936-2000 No No No Normal Normal Normal Normal 

Mira 29G.01 Sabóia 1932-1994 Negative No No Normal Normal Normal Normal 

Mira 29I.02 Santa Clara-a-Nova 1981-1999 No No No Normal Normal Normal Normal 

Sado 21G.01 Vendas Novas 1932-1999 Negative No No Reject Reject Reject Reject 

Sado 22E.01 Águas de Moura 1984-2001 No Positive No Normal Normal Normal Normal 

Sado 22F.03 Moinhola 1973-2000 No No No Normal Normal Normal Normal 

Sado 22H.02 Santiago do Escoural 1932-1999 No No No Reject Reject Reject Reject 

Sado 23E.01 Comporta 1934-2000 No No No Normal Normal Normal Normal 

Sado 23F.01 Montevil 1984-2000 No No No Normal Normal Normal Normal 

Sado 23G.01 Barragem de Pego do Altar 1980-2000 No No No Normal Normal Normal Normal 

Sado 23I.01 Alcáçovas 1932-2000 No No No Normal Normal Normal Normal 

Sado 24F.01 Grândola 1973-2000 No No No Normal Normal Normal Normal 

Sado 24H.02 Barragem do Vale do Gaio 1980-2000 Negative No No Normal Normal Normal Normal 

Sado 24I.01 Viana do Alentejo 1934-2000 No No No Normal Normal Normal Normal 

Sado 24I.03 Barragem de Odivelas 1974-2000 Negative No No Normal Normal Normal Normal 

Sado 24J.02 Alvito 1984-2000 No No No Normal Normal Normal Normal 

Sado 25G.01 Azinheira Barros 1951-2000 No No No Normal Reject Normal Normal 
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Durbin-Watson 
autocorrelation tests 

(5% level) 
NORMALITY TESTS 

(5% level) BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
1st 

Order 
2nd 

Order 
3rd 

Order 
Shapiro-

Wilk 
Kolmogorov-

Smirnov 
Cramer-

von 
Mises 

Anderson-
Darling 

Sado 25I.01 Ferreira do Alentejo 1933-2000 Negative No No Normal Normal Normal Normal 

Sado 26F.02 Barragem de Campilhas 1956-1994 No No No Normal Normal Normal Normal 

Sado 26I.01 Santa Vitória 1984-2000 No No No Normal Normal Normal Normal 

Sado 26I.02 Barragem do Roxo 1959-2000 No No No Normal Normal Normal Normal 

Sado 26I.03 Aljustrel 1936-2000 Negative No No Reject Normal Normal Normal 

Sado 27G.02 Garvão (Montinho) 1980-1994 No No No Normal Normal Normal Normal 

Sado 27H.01 Panóias 1956-1994 No No No Normal Normal Normal Normal 

Sado 27H.02 Barragem do Monte da Rocha 1980-1994 No No No Normal Normal Normal Normal 

Guadiana 18N.01 São Julião 1981-1999 No No No Normal Normal Normal Normal 

Guadiana 18N.02 Alegrete 1981-1999 No No No Normal Normal Normal Normal 

Guadiana 19N.01 Arronches 1932-1999 No No No Normal Normal Normal Normal 

Guadiana 19N.02 Santa Eulália 1983-1999 No No No Normal Normal Reject Reject 

Guadiana 19N.03 Esperança 1980-1999 No No No Normal Normal Normal Normal 

Guadiana 19O.02 Barragem do Caia 1965-2000 No No No Normal Normal Normal Normal 

Guadiana 19O.03 Degolados 1984-1999 No No No Normal Normal Normal Normal 

Guadiana 20O.02 Caia (M. Caldeiras) 1980-1999 No No No Normal Normal Normal Normal 

Guadiana 21K.01 Azaruja 1944-1982 No No No Normal Normal Normal Normal 

Guadiana 21M.01 Vila Viçosa 1981-2000 No No No Normal Normal Normal Normal 

Guadiana 21M.02 Alandroal 1984-1999 No No No Normal Normal Normal Normal 

Guadiana 21N.01 Juromenha 1932-1999 Negative No No Normal Normal Normal Normal 

Guadiana 22L.01 Redondo 1945-1982 No No No Reject Normal Normal Normal 

Guadiana 22L.02 Santa Susana 1950-1999 Negative No No Normal Normal Normal Normal 

Guadiana 22M.01 Santiago Maior 1984-1999 No No No Normal Normal Normal Normal 

Guadiana 23K.01 São Manços 1943-2000 No No No Normal Normal Normal Normal 
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Durbin-Watson 
autocorrelation tests 

(5% level) 
NORMALITY TESTS 

(5% level) BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
1st 

Order 
2nd 

Order 
3rd 

Order 
Shapiro-

Wilk 
Kolmogorov-

Smirnov 
Cramer-

von 
Mises 

Anderson-
Darling 

Guadiana 23L.01 Reguengos 1985-1999 No No No Normal Normal Normal Normal 

Guadiana 24J.03 Cuba 1986-1998 No No No Normal Normal Normal Normal 

Guadiana 24K.01 Portel 1984-1999 No No No Normal Normal Normal Normal 

Guadiana 24K.02 Vidigueira 1984-2000 No Positive No Normal Normal Normal Normal 

Guadiana 24N.01 Amareleja (D.G.R.N.) 1984-2000 No No No Normal Normal Normal Normal 

Guadiana 25L.01 Pedrogão do Alentejo 1942-2000 Negative No No Normal Normal Normal Normal 

Guadiana 25N.01 Sobral da Adiça 1981-2000 No No No Normal Normal Normal Normal 

Guadiana 25O.01 Santo Aleixo da Restauração 1932-2000 Negative No No Normal Normal Normal Normal 

Guadiana 25P.01 Barrancos 1986-1998 No No No Normal Normal Normal Normal 

Guadiana 26J.04 Albernoa 1984-2000 No No No Reject Reject Reject Reject 

Guadiana 26K.01 Salvada 1984-2000 No No No Normal Normal Normal Normal 

Guadiana 26L.01 Serpa 1985-2000 No No No Normal Normal Normal Normal 

Guadiana 26L.02 Santa Iria 1980-2000 No No No Normal Normal Normal Normal 

Guadiana 26M.01 Herdade de Valada 1969-2000 No No No Normal Normal Reject Reject 

Guadiana 27I.01 Castro Verde 1932-2000 No No No Normal Normal Normal Normal 

Guadiana 27J.01 São Marcos da Ataboeira 1984-2000 No No No Normal Normal Normal Normal 

Guadiana 27J.02 Corte Pequena 1986-1996 No No No Reject Reject Reject Reject 

Guadiana 27J.03 Vale de Camelos 1990-2000 No No No Normal Normal Normal Normal 

Guadiana 27K.01 Algodôr 1987-1999 No No No Normal Reject Reject Reject 

Guadiana 27K.02 Corte da Velha 1980-2000 No No No Normal Normal Normal Normal 

Guadiana 28I.01 Almodôvar 1984-2000 No No No Normal Normal Normal Normal 

Guadiana 28J.01 Alcaria Longa 1986-1999 No No No Normal Normal Normal Normal 

Guadiana 28J.03 Santa Barbara de Padrões 1980-2000 No No No Normal Normal Normal Normal 

Guadiana 28K.01 São João dos Caldeireiros 1984-2000 No No No Normal Normal Normal Normal 
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Durbin-Watson 
autocorrelation tests 

(5% level) 
NORMALITY TESTS 

(5% level) BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
1st 

Order 
2nd 

Order 
3rd 

Order 
Shapiro-

Wilk 
Kolmogorov-

Smirnov 
Cramer-

von 
Mises 

Anderson-
Darling 

Guadiana 28K.02 Álamo 1981-2000 No No No Normal Normal Normal Normal 

Guadiana 28L.01 Mértola 1984-2000 No No No Reject Normal Reject Reject 

Guadiana 29J.05 Guedelhas 1980-1999 No No No Normal Normal Normal Normal 

Guadiana 29K.01 Martim Longo 1985-2000 No No No Normal Reject Reject Reject 

Guadiana 29K.03 Malfrades 1981-1999 No No No Reject Reject Reject Reject 

Guadiana 29K.04 Penedos 1981-2000 Negative No No Normal Reject Reject Reject 

Guadiana 29L.01 Pereiro 1958-1999 Negative No No Normal Normal Normal Normal 

Guadiana 29L.03 Monte dos Fortes 1984-1999 No No No Reject Reject Reject Reject 

Guadiana 29M.01 Alcoutim 1939-1999 Negative - No Normal Normal Normal Normal 

Guadiana 30I.02 Sobreira 1943-1999 Negative No No Normal Reject Normal Normal 

Guadiana 30J.01 Barranco do Velho 1956-1999 Negative No No Normal Normal Normal Normal 

Guadiana 30J.02 Catraia 1932-1973 No No No Normal Normal Normal Normal 

Guadiana 30K.01 Mercador 1984-1999 No No No Normal Normal Normal Normal 

Guadiana 30L.04 Alcaria (Castro Marim) 1947-1999 No No No Normal Normal Normal Normal 
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Table 2 – Summary results from the absolute testing approach: tests not capable of locating the year where a break is likely applied to 107 series of 
annual wet day count (1 mm threshold) 

WALD-
WOLFOWITZ 

(5% level) 
MANN-KENDALL 

(5% level) 
BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 
Two-tailed test result

One-tailed test result 
based on large sample 

approx. (n>7) 

VON NEUMANN 
(5% level) 

ECA&D 666 Beja 1941-1999 Homogeneous data Homogeneous data Break present 

ECA&D 675 Lisboa Geofísica 1941-1999 Homogeneous data Homogeneous data Homogeneous data 

ECA&D 681 Tavira 1941-1994 Homogeneous data Downward trend present Homogeneous data 

ECA&D 709 Badajoz Talavera 1955-2000 Homogeneous data Homogeneous data Break present 

Arade 29I.01 São Barnabé 1965-2000 Homogeneous data Homogeneous data Break present 

Arade 30F.01 Monchique 1933-1998 Trend effec present Homogeneous data Break present 

Arade 30G.01 Alferce 1959-1999 Homogeneous data Homogeneous data Homogeneous data 

Arade 30H.04 Santa Margarida 1965-1999 Homogeneous data Homogeneous data Homogeneous data 

Ribeiras do Algarve 29F.01 Cimalhas 1981-1999 Homogeneous data Homogeneous data 

Ribeiras do Algarve 29F.02 Foz do Farelo 1981-1999 Homogeneous data Homogeneous data 

Ribeiras do Algarve 30E.01 Aljezur 1932-1999 Homogeneous data Homogeneous data Homogeneous data 

Ribeiras do Algarve 30E.02 Marmelete 1984-1999 Homogeneous data Homogeneous data 

Ribeiras do Algarve 30E.03 Barragem da Bravura 1956-2000 Homogeneous data Homogeneous data Homogeneous data 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines 1991-1998 Homogeneous data Homogeneous data 

Ribeiras do Algarve 30H.05 Paderne 1984-1999 Homogeneous data Downward trend present 

Ribeiras do Algarve 30K.02 Picota 1957-1999 Homogeneous data Homogeneous data Homogeneous data 

Ribeiras do Algarve 30L.03 Faz-Fato 1956-1999 Homogeneous data Homogeneous data Break present 

Ribeiras do Algarve 31E.01 Lagos 1956-1999 Homogeneous data Downward trend present Homogeneous data 

Ribeiras do Algarve 31G.02 Porches 1980-1998 Homogeneous data Homogeneous data 

Ribeiras do Algarve 31H.02 Algoz 1981-1996 Homogeneous data Homogeneous data 
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WALD-
WOLFOWITZ 

(5% level) 
MANN-KENDALL 

(5% level) 
BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 

Two-tailed test result
One-tailed test result 

based on large sample 
approx. (n>7) 

VON NEUMANN 
(5% level) 

Ribeiras do Algarve 31J.01 São Brás de Alportel 1985-2000 Homogeneous data Homogeneous data 

Ribeiras do Algarve 31J.04 Estoi 1984-1999 Homogeneous data Homogeneous data 

Ribeiras do Algarve 31K.01 Santa Catarina (Tavira) 1984-1999 Homogeneous data Homogeneous data 

Ribeiras do Algarve 31K.02 Quelfes 1982-1998 Homogeneous data Homogeneous data 

Mira 27G.01 Relíquias 1932-2000 Homogeneous data Homogeneous data Homogeneous data 

Mira 28F.01 Odemira 1932-1994 Homogeneous data Downward trend present Homogeneous data 

Mira 28G.01 Barragem de Mira 1970-1993 Homogeneous data Homogeneous data Break present 

Mira 28H.01 Aldeia de Palheiros 1932-1996 Homogeneous data Homogeneous data Homogeneous data 

Mira 28H.03 Santana da Serra 1936-2000 Homogeneous data Downward trend present Homogeneous data 

Mira 29G.01 Sabóia 1932-1994 Homogeneous data Homogeneous data Break present 

Mira 29I.02 Santa Clara-a-Nova 1981-1999 Homogeneous data Homogeneous data 

Sado 21G.01 Vendas Novas 1932-1999 Homogeneous data Homogeneous data Break present 

Sado 22E.01 Águas de Moura 1984-2001 Homogeneous data Homogeneous data 

Sado 22F.03 Moinhola 1973-2000 Homogeneous data Homogeneous data Break present 

Sado 22H.02 Santiago do Escoural 1932-1999 Homogeneous data Homogeneous data Homogeneous data 

Sado 23E.01 Comporta 1934-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 23F.01 Montevil 1984-2000 Homogeneous data Homogeneous data 

Sado 23G.01 Barragem de Pego do Altar 1980-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 23I.01 Alcáçovas 1932-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 24F.01 Grândola 1973-2000 Homogeneous data Upward trend present Break present 

Sado 24H.02 Barragem do Vale do Gaio 1980-2000 Homogeneous data Homogeneous data Break present 

Sado 24I.01 Viana do Alentejo 1934-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 24I.03 Barragem de Odivelas 1974-2000 Homogeneous data Homogeneous data Break present 

Sado 24J.02 Alvito 1984-2000 Homogeneous data Homogeneous data 
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WALD-
WOLFOWITZ 

(5% level) 
MANN-KENDALL 

(5% level) 
BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 

Two-tailed test result
One-tailed test result 

based on large sample 
approx. (n>7) 

VON NEUMANN 
(5% level) 

Sado 25G.01 Azinheira Barros 1951-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 25I.01 Ferreira do Alentejo 1933-2000 Homogeneous data Homogeneous data Break present 

Sado 26F.02 Barragem de Campilhas 1956-1994 Homogeneous data Homogeneous data Break present 

Sado 26I.01 Santa Vitória 1984-2000 Homogeneous data Homogeneous data 

Sado 26I.02 Barragem do Roxo 1959-2000 Homogeneous data Homogeneous data Homogeneous data 

Sado 26I.03 Aljustrel 1936-2000 Trend effec present Downward trend present Break present 

Sado 27G.02 Garvão (Montinho) 1980-1994 Homogeneous data Homogeneous data 

Sado 27H.01 Panóias 1956-1994 Homogeneous data Homogeneous data Homogeneous data 

Sado 27H.02 Barragem do Monte da Rocha 1980-1994 Homogeneous data Homogeneous data 

Guadiana 18N.01 São Julião 1981-1999 Homogeneous data Homogeneous data 

Guadiana 18N.02 Alegrete 1981-1999 Homogeneous data Homogeneous data 

Guadiana 19N.01 Arronches 1932-1999 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 19N.02 Santa Eulália 1983-1999 Homogeneous data Homogeneous data 

Guadiana 19N.03 Esperança 1980-1999 Homogeneous data Homogeneous data 

Guadiana 19O.02 Barragem do Caia 1965-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 19O.03 Degolados 1984-1999 Homogeneous data Homogeneous data 

Guadiana 20O.02 Caia (M. Caldeiras) 1980-1999 Homogeneous data Homogeneous data 

Guadiana 21K.01 Azaruja 1944-1982 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 21M.01 Vila Viçosa 1981-2000 Homogeneous data Upward trend present Homogeneous data 

Guadiana 21M.02 Alandroal 1984-1999 Homogeneous data Homogeneous data 

Guadiana 21N.01 Juromenha 1932-1999 Homogeneous data Downward trend present Break present 

Guadiana 22L.01 Redondo 1945-1982 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 22L.02 Santa Susana 1950-1999 Homogeneous data Downward trend present Break present 

Guadiana 22M.01 Santiago Maior 1984-1999 Homogeneous data Homogeneous data 
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WALD-
WOLFOWITZ 

(5% level) 
MANN-KENDALL 

(5% level) 
BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 

Two-tailed test result
One-tailed test result 

based on large sample 
approx. (n>7) 

VON NEUMANN 
(5% level) 

Guadiana 23K.01 São Manços 1943-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 23L.01 Reguengos 1985-1999 Homogeneous data Homogeneous data 

Guadiana 24J.03 Cuba 1986-1998 Homogeneous data Homogeneous data 

Guadiana 24K.01 Portel 1984-1999 Homogeneous data Homogeneous data 

Guadiana 24K.02 Vidigueira 1984-2000 Homogeneous data Homogeneous data 

Guadiana 24N.01 Amareleja (D.G.R.N.) 1984-2000 Homogeneous data Homogeneous data 

Guadiana 25L.01 Pedrogão do Alentejo 1942-2000 Trend effec present Homogeneous data Break present 

Guadiana 25N.01 Sobral da Adiça 1981-2000 Homogeneous data Homogeneous data 

Guadiana 25O.01 Santo Aleixo da Restauração 1932-2000 Trend effec present Homogeneous data Break present 

Guadiana 25P.01 Barrancos 1986-1998 Homogeneous data Homogeneous data 

Guadiana 26J.04 Albernoa 1984-2000 Homogeneous data Homogeneous data 

Guadiana 26K.01 Salvada 1984-2000 Homogeneous data Homogeneous data 

Guadiana 26L.01 Serpa 1985-2000 Homogeneous data Homogeneous data 

Guadiana 26L.02 Santa Iria 1980-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 26M.01 Herdade de Valada 1969-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 27I.01 Castro Verde 1932-2000 Homogeneous data Downward trend present Homogeneous data 

Guadiana 27J.01 São Marcos da Ataboeira 1984-2000 Homogeneous data Homogeneous data 

Guadiana 27J.02 Corte Pequena 1986-1996 Homogeneous data Homogeneous data 

Guadiana 27J.03 Vale de Camelos 1990-2000 Homogeneous data Homogeneous data 

Guadiana 27K.01 Algodôr 1987-1999 Homogeneous data Homogeneous data 

Guadiana 27K.02 Corte da Velha 1980-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 28I.01 Almodôvar 1984-2000 Homogeneous data Homogeneous data 

Guadiana 28J.01 Alcaria Longa 1986-1999 Homogeneous data Homogeneous data 

Guadiana 28J.03 Santa Barbara de Padrões 1980-2000 Homogeneous data Homogeneous data Homogeneous data 
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WALD-
WOLFOWITZ 

(5% level) 
MANN-KENDALL 

(5% level) 
BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD 

Two-tailed test result
One-tailed test result 

based on large sample 
approx. (n>7) 

VON NEUMANN 
(5% level) 

Guadiana 28K.01 São João dos Caldeireiros 1984-2000 Homogeneous data Homogeneous data 

Guadiana 28K.02 Álamo 1981-2000 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 28L.01 Mértola 1984-2000 Homogeneous data Homogeneous data 

Guadiana 29J.05 Guedelhas 1980-1999 Homogeneous data Homogeneous data 

Guadiana 29K.01 Martim Longo 1985-2000 Homogeneous data Homogeneous data 

Guadiana 29K.03 Malfrades 1981-1999 Homogeneous data Homogeneous data 

Guadiana 29K.04 Penedos 1981-2000 Homogeneous data Upward trend present 

Guadiana 29L.01 Pereiro 1958-1999 Homogeneous data Homogeneous data Break present 

Guadiana 29L.03 Monte dos Fortes 1984-1999 Homogeneous data Homogeneous data 

Guadiana 29M.01 Alcoutim 1939-1999 Trend effec present Homogeneous data Break present 

Guadiana 30I.02 Sobreira 1943-1999 Trend effec present Homogeneous data Break present 

Guadiana 30J.01 Barranco do Velho 1956-1999 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 30J.02 Catraia 1932-1973 Homogeneous data Homogeneous data Homogeneous data 

Guadiana 30K.01 Mercador 1984-1999 Homogeneous data Homogeneous data 

Guadiana 30L.04 Alcaria (Castro Marim) 1947-1999 Homogeneous data Homogeneous data Homogeneous data 
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Table 3 – Summary results from the absolute testing approach: tests capable of locating the year where a break is likely applied to 107 series of annual 
wet day count (1 mm threshold), and series classification 

BASIN / 
NETWORK 

STATION 
CODE / 
ID 

STATION NAME PERIOD BUISHAND 
(5% level) 

PETTIT 
(5% level) 

SNHT 
(5% level) 

SERIES 
CLASSIFICATION 

ECA&D 666 Beja 1941-1999 Homogeneous data Homogeneous data Homogeneous data Candidate 

ECA&D 675 Lisboa Geofísica 1941-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

ECA&D 681 Tavira 1941-1994 Homogeneous data Break: 1979 Break: 1978 Reject 

ECA&D 709 Badajoz Talavera 1955-2000 Homogeneous data Homogeneous data Homogeneous data Candidate 

Arade 29I.01 São Barnabé 1965-2000 Homogeneous data Break: 1972 Homogeneous data Reject 

Arade 30F.01 Monchique 1933-1998 Homogeneous data Homogeneous data Homogeneous data Reject 

Arade 30G.01 Alferce 1959-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

Arade 30H.04 Santa Margarida 1965-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

Ribeiras do Algarve 29F.01 Cimalhas 1981-1999  Break: 1982 Doubtful 

Ribeiras do Algarve 29F.02 Foz do Farelo 1981-1999  Break: 1983 Doubtful 

Ribeiras do Algarve 30E.01 Aljezur 1932-1999 Break: 1942 Homogeneous data Homogeneous data Candidate 

Ribeiras do Algarve 30E.02 Marmelete 1984-1999  Homogeneous data Useful 

Ribeiras do Algarve 30E.03 Barragem da Bravura 1956-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines 1991-1998  Useful 

Ribeiras do Algarve 30H.05 Paderne 1984-1999  Homogeneous data Doubtful 

Ribeiras do Algarve 30K.02 Picota 1957-1999 Homogeneous data Break: 1972 Homogeneous data Candidate 

Ribeiras do Algarve 30L.03 Faz-Fato 1956-1999 Break: 1986 Break: 1986 Homogeneous data Reject 

Ribeiras do Algarve 31E.01 Lagos 1956-1999 Break: 1972 Break: 1979 Break: 1972 Reject 

Ribeiras do Algarve 31G.02 Porches 1980-1998  Homogeneous data Useful 

Ribeiras do Algarve 31H.02 Algoz 1981-1996  Homogeneous data Useful 

Ribeiras do Algarve 31J.01 São Brás de Alportel 1985-2000  Homogeneous data Useful 

Ribeiras do Algarve 31J.04 Estoi 1984-1999  Homogeneous data Useful 
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Ribeiras do Algarve 31K.01 Santa Catarina (Tavira) 1984-1999  Homogeneous data Useful 

Ribeiras do Algarve 31K.02 Quelfes 1982-1998  Homogeneous data Useful 

Mira 27G.01 Relíquias 1932-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Mira 28F.01 Odemira 1932-1994 Homogeneous data Homogeneous data Homogeneous data Candidate 

Mira 28G.01 Barragem de Mira 1970-1993 Homogeneous data Homogeneous data Homogeneous data Doubtful 

Mira 28H.01 Aldeia de Palheiros 1932-1996 Homogeneous data Break: 1979 Homogeneous data Candidate 

Mira 28H.03 Santana da Serra 1936-2000 Homogeneous data Break: 1979 Homogeneous data Reject 

Mira 29G.01 Sabóia 1932-1994 Homogeneous data Homogeneous data Homogeneous data Candidate 

Mira 29I.02 Santa Clara-a-Nova 1981-1999  Homogeneous data Useful 

Sado 21G.01 Vendas Novas 1932-1999 Homogeneous data Homogeneous data Break: 1943 Reject 

Sado 22E.01 Águas de Moura 1984-2001  Homogeneous data Useful 

Sado 22F.03 Moinhola 1973-2000 Homogeneous data Homogeneous data Homogeneous data Doubtful 

Sado 22H.02 Santiago do Escoural 1932-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

Sado 23E.01 Comporta 1934-2000 Homogeneous data Homogeneous data Break: 1935 Candidate 

Sado 23F.01 Montevil 1984-2000  Homogeneous data Useful 

Sado 23G.01 Barragem de Pego do Altar 1980-2000 Homogeneous data Homogeneous data Homogeneous data Useful 

Sado 23I.01 Alcáçovas 1932-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Sado 24F.01 Grândola 1973-2000 Homogeneous data Break: 1979 Break: 1982 Doubtful 

Sado 24H.02 Barragem do Vale do Gaio 1980-2000 Homogeneous data Homogeneous data Homogeneous data Doubtful 

Sado 24I.01 Viana do Alentejo 1934-2000 Homogeneous data Break: 1989 Homogeneous data Candidate 

Sado 24I.03 Barragem de Odivelas 1974-2000 Homogeneous data Homogeneous data Homogeneous data Doubtful 

Sado 24J.02 Alvito 1984-2000  Homogeneous data Useful 

Sado 25G.01 Azinheira Barros 1951-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Sado 25I.01 Ferreira do Alentejo 1933-2000 Break: 1958 Break: 1958 Break: 1958 Reject 

Sado 26F.02 Barragem de Campilhas 1956-1994 Homogeneous data Breaks: 1979, 1989 Break: 1979 Doubtful 

Sado 26I.01 Santa Vitória 1984-2000  Homogeneous data Useful 
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Sado 26I.02 Barragem do Roxo 1959-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Sado 26I.03 Aljustrel 1936-2000 Break: 1972 Break: 1972 Break: 1972 Reject 

Sado 27G.02 Garvão (Montinho) 1980-1994  Break: 1983 Doubtful 

Sado 27H.01 Panóias 1956-1994 Homogeneous data Homogeneous data Homogeneous data Reference 

Sado 27H.02 Barragem do Monte da Rocha 1980-1994  Homogeneous data Useful 

Guadiana 18N.01 São Julião 1981-1999  Homogeneous data Useful 

Guadiana 18N.02 Alegrete 1981-1999  Homogeneous data Useful 

Guadiana 19N.01 Arronches 1932-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 19N.02 Santa Eulália 1983-1999  Homogeneous data Useful 

Guadiana 19N.03 Esperança 1980-1999  Homogeneous data Useful 

Guadiana 19O.02 Barragem do Caia 1965-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 19O.03 Degolados 1984-1999  Homogeneous data Useful 

Guadiana 20O.02 Caia (M. Caldeiras) 1980-1999  Break: 1989 Doubtful 

Guadiana 21K.01 Azaruja 1944-1982 Homogeneous data Break: 1952 Homogeneous data Candidate 

Guadiana 21M.01 Vila Viçosa 1981-2000 Homogeneous data Homogeneous data Homogeneous data Doubtful 

Guadiana 21M.02 Alandroal 1984-1999  Break: 1989 Doubtful 

Guadiana 21N.01 Juromenha 1932-1999 Homogeneous data Homogeneous data Homogeneous data Reject 

Guadiana 22L.01 Redondo 1945-1982 Break: 1962 Homogeneous data Homogeneous data Candidate 

Guadiana 22L.02 Santa Susana 1950-1999 Break: 1979 Break: 1979 Break: 1979 Reject 

Guadiana 22M.01 Santiago Maior 1984-1999  Homogeneous data Useful 

Guadiana 23K.01 São Manços 1943-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 23L.01 Reguengos 1985-1999  Homogeneous data Useful 

Guadiana 24J.03 Cuba 1986-1998  Homogeneous data Useful 

Guadiana 24K.01 Portel 1984-1999  Homogeneous data Useful 

Guadiana 24K.02 Vidigueira 1984-2000  Homogeneous data Useful 

Guadiana 24N.01 Amareleja (D.G.R.N.) 1984-2000  Homogeneous data Useful 
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Guadiana 25L.01 Pedrogão do Alentejo 1942-2000 Break: 1954 Break: 1954, 1972 Breaks: 1946, 1954, 1965 Reject 

Guadiana 25N.01 Sobral da Adiça 1981-2000  Break: 1983 Doubtful 

Guadiana 25O.01 Santo Aleixo da Restauração 1932-2000 Break: 1958 Break: 1958 Homogeneous data Reject 

Guadiana 25P.01 Barrancos 1986-1998  Homogeneous data Useful 

Guadiana 26J.04 Albernoa 1984-2000  Homogeneous data Useful 

Guadiana 26K.01 Salvada 1984-2000  Homogeneous data Useful 

Guadiana 26L.01 Serpa 1985-2000  Homogeneous data Useful 

Guadiana 26L.02 Santa Iria 1980-2000 Homogeneous data Homogeneous data Homogeneous data Useful 

Guadiana 26M.01 Herdade de Valada 1969-2000 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 27I.01 Castro Verde 1932-2000 Homogeneous data Break: 1979 Homogeneous data Reject 

Guadiana 27J.01 São Marcos da Ataboeira 1984-2000  Homogeneous data Useful 

Guadiana 27J.02 Corte Pequena 1986-1996  Homogeneous data Useful 

Guadiana 27J.03 Vale de Camelos 1990-2000  Homogeneous data Useful 

Guadiana 27K.01 Algodôr 1987-1999  Homogeneous data Useful 

Guadiana 27K.02 Corte da Velha 1980-2000 Homogeneous data Homogeneous data Homogeneous data Useful 

Guadiana 28I.01 Almodôvar 1984-2000  Homogeneous data Useful 

Guadiana 28J.01 Alcaria Longa 1986-1999  Homogeneous data Useful 

Guadiana 28J.03 Santa Barbara de Padrões 1980-2000 Homogeneous data Homogeneous data Homogeneous data Useful 

Guadiana 28K.01 São João dos Caldeireiros 1984-2000  Homogeneous data Useful 

Guadiana 28K.02 Álamo 1981-2000 Homogeneous data Homogeneous data Homogeneous data Useful 

Guadiana 28L.01 Mértola 1984-2000  Homogeneous data Useful 

Guadiana 29J.05 Guedelhas 1980-1999  Homogeneous data Useful 

Guadiana 29K.01 Martim Longo 1985-2000  Homogeneous data Useful 

Guadiana 29K.03 Malfrades 1981-1999  Homogeneous data Useful 

Guadiana 29K.04 Penedos 1981-2000  Break: 1995 Doubtful 

Guadiana 29L.01 Pereiro 1958-1999 Break: 1983 Homogeneous data Break: 1995 Reject 
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Guadiana 29L.03 Monte dos Fortes 1984-1999  Homogeneous data Useful 

Guadiana 29M.01 Alcoutim 1939-1999 Break: 1959 Break: 1959 Break: 1959 Reject 

Guadiana 30I.02 Sobreira 1943-1999 Break: 1954 Homogeneous data Break: 1949 Reject 

Guadiana 30J.01 Barranco do Velho 1956-1999 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 30J.02 Catraia 1932-1973 Homogeneous data Homogeneous data Homogeneous data Reference 

Guadiana 30K.01 Mercador 1984-1999  Homogeneous data Useful 

Guadiana 30L.04 Alcaria (Castro Marim) 1947-1999 Homogeneous data Homogeneous data Homogeneous data Reference 
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Table 1 – Summary results from the relative testing approach: Buishand, Pettit, and SNHT tests applied to composite (ratio) reference series of the 
annual wet day count (1 mm threshold) 

BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME REFERENCE SERIES PERIOD BUISHAND 
(5% level) 

PETTIT 
(5% level) 

SNHT 
(5% level) 

ECA&D 666 Beja Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 1951-1999 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

ECA&D 709 Badajoz Talavera Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 1955-2000 Homogeneous 

data Break: 1975 Homogeneous 
data 

Ribeiras do Algarve 30E.01 Aljezur Barragem da Bravura (Rib. Algarve 30E.03) 
Arronches (Guadiana 19N.01) 1956-1999 Break: 1968 Break: 1968 Break: 1968 

Ribeiras do Algarve 30K.02 Picota Barragem da Bravura (Rib. Algarve 30E.03) 
Alcaria [Castro Marim] (Guadiana 30L.04) 1957-1999 Break: 1988 Homogeneous 

data 
Homogeneous 
data 

Mira 28F.01 Odemira Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 1952-1994 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Mira 28H.01 Aldeia de Palheiros Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 1951-1995 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Mira 29G.01 Sabóia Santiago do Escoural (Sado 22H.02) 
Relíquias (Mira 27G.01) 1932-1994 Breaks: 1949; 1984 Break: 1984 Break: 1985 

Sado 23E.01 Comporta Barragem da Bravura (Rib. Algarve 30E.03) 
Azinheira Barros (Sado 25G.01) 1956-2000 Homogeneous 

data Break: 1986 Break: 1986 

Sado 24I.01 Viana do Alentejo Alcáçovas (Sado 23I.01) 
Santiago do Escoural (Sado 22H.02) 1934-1999 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Guadiana 21K.01 Azaruja Santiago do Escoural (Sado 22H.02) 
Lisboa Geofísica (ECA 675) 1944-1982 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Guadiana 22L.01 Redondo São Manços (Guadiana 23K.01) 
Santiago do Escoural (Sado 22H.02) 1945-1982 Break: 1963 Break: 1963 Break: 1963 

TESTS FOR REFERENCE SERIES  

ECA&D 675 Lisboa Geofísica Santiago do Escoural (Sado 22H.02) 
Alcáçovas (Sado 23I.01) 1941-1999 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Arade 30G.01 Alferce Barragem da Bravura (Rib. Algarve 30E.03) 
Azinheira Barros (Sado 25G.01) 1959-1999 Break: 1984 Break: 1984 Homogeneous 

data 

Arade 30H.04 Santa Margarida Barragem da Bravura (Rib. Algarve 30E.03) 
Relíquias (Mira 27G.01) 1965-1999 Break: 1978 Break: 1978 Break: 1978 
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BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME REFERENCE SERIES PERIOD BUISHAND 
(5% level) 

PETTIT 
(5% level) 

SNHT 
(5% level) 

Ribeiras do Algarve 30E.03 Barragem da Bravura São Manços (Guadiana 23K.01) 
Azinheira Barros (Sado 25G.01) 1956-2000 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Mira 27G.01 Relíquias Alcáçovas (Sado 23I.01) 
Santiago do Escoural (Sado 22H.02) 1932-1999 Break: 1969 Break: 1969 Homogeneous 

data 

Sado 22H.02 Santiago do Escoural Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 1932-1999 Break: 1988 Break: 1988 Break: 1989 

Sado 23I.01 Alcáçovas Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 1932-1999 Break: 1960 Break: 1960 Break: 1960 

Sado 25G.01 Azinheira Barros São Manços (Guadiana 23K.01) 
Lisboa Geofísica (ECA 675) 1951-1999 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Sado 26I.02 Barragem do Roxo Azinheira Barros (Sado 25G.01) 
Barragem da Bravura (Rib. Algarve 30E.03) 1959-2000 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Sado 27H.01 Panóias Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 1956-1994 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Guadiana 19N.01 Arronches Santiago do Escoural (Sado 22H.02) 
Relíquias (Mira 27G.01) 1932-1999 Homogeneous 

data 
Homogeneous 
data Break: 1954 

Guadiana 19O.02 Barragem do Caia Barragem da Bravura (Rib. Algarve 30E.03) 
Azinheira Barros (Sado 25G.01) 1965-2000 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Guadiana 23K.01 São Manços Alcáçovas (Sado 23I.01) 
Lisboa Geofísica (ECA 675) 1943-1999 Homogeneous 

data 
Homogeneous 
data Break: 1950 

Guadiana 26M.01 Herdade de Valada Barragem do Roxo (Sado 26I.02) 
Azinheira Barros (Sado 25G.01) 1969-2000 Homogeneous 

data 
Homogeneous 
data Break: 1995 

Guadiana 30J.01 Barranco do Velho Alcáçovas (Sado 23I.01) 
Barragem da Bravura (Rib. Algarve 30E.03) 1956-1999 Break: 1976 Break: 1976 Breaks: 1975; 1996 

Guadiana 30J.02 Catraia Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 1932-1973 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 

Guadiana 30L.04 Alcaria (Castro Marim) Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 1947-1999 Homogeneous 

data 
Homogeneous 
data 

Homogeneous 
data 
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Table 2 – Summary results from the relative testing approach: SUR+Ellipse test applied to the annual wet day count (1 mm threshold) 

BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME 

REFERENCE SERIES 
(In light gray: independent variables, 
non significant at the 5% level, that 
were removed from the models) 

MODEL 
('m' indicates average of 

references as 
independent variable) 

PERIOD SUR + Ellipse 
(5% level) 

Lisboa Geofísica (ECA 675) 
Relíquias (Mira 27G.01) 
Arronches (Guadiana 19N.01) 

5 1941-1999 Homogeneous data 

Lisboa Geofísica (ECA 675) 
Relíquias (Mira 27G.01) 
Arronches (Guadiana 19N.01) 

13 1945-1982 Homogeneous data ECA&D 666 Beja 

Lisboa Geofísica (ECA 675) 
Relíquias (Mira 27G.01) 
Arronches (Guadiana 19N.01) 

12 1956-1997 Homogeneous data 

Relíquias (Mira 27G.01) 
Azinheira Barros (Sado 25G.01) 6 1956-1997 Homogeneous data 

ECA&D 709 Badajoz Talavera 
Relíquias (Mira 27G.01) 
Azinheira Barros (Sado 25G.01) 12 1956-1997 Homogeneous data 

Arronches (Guadiana 19N.01) 5 1941-1999 Homogeneous data 
Arronches (Guadiana 19N.01) 6 1956-1997 Break: 1968 
Arronches (Guadiana 19N.01) 7 1932-1996 Homogeneous data 
Arronches (Guadiana 19N.01) 9 1932-1994 Homogeneous data 
Arronches (Guadiana 19N.01) 10 1932-1996 Homogeneous data 
Arronches (Guadiana 19N.01) 11 1932-1994 Homogeneous data 

Ribeiras do Algarve 30E.01 Aljezur 

Arronches (Guadiana 19N.01) 12 1956-1997 Break: 1968 

Ribeiras do Algarve 30K.02 Picota 

Barragem da Bravura (Rib. Algarve 
30E.03) 
Alcaria [Castro Marim] (Guadiana 30L.04) 
Azinheira Barros (Sado 25G.01) 
Lisboa Geofísica (ECA 675) 

8 1957-1995 Homogeneous data 

Mira 28F.01 Odemira Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 9 1932-1994 Break: 1952 
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BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME 

REFERENCE SERIES 
(In light gray: independent variables, 
non significant at the 5% level, that 
were removed from the models) 

MODEL 
('m' indicates average of 

references as 
independent variable) 

PERIOD SUR + Ellipse 
(5% level) 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 7 1932-1996 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 8 1957-1995 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 9 1932-1994 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 10 1932-1996 Homogeneous data 

Mira 28H.01 Aldeia de Palheiros 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 11 1932-1994 Homogeneous data 

Mira 29G.01 Sabóia Santiago do Escoural (Sado 22H.02) 11 1932-1994 Break: 1984 
Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 6 1956-1997 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 8 1957-1995 Break: 1986 Sado 23E.01 Comporta 

Santiago do Escoural (Sado 22H.02) 
Arronches (Guadiana 19N.01) 12 1956-1997 Homogeneous data 

Sado 24I.01 Viana do Alentejo Not possible to determine a common period, without too many gaps, for all the series that would be appropriate to 
include in a model 

Guadiana 21K.01 Azaruja 

Santiago do Escoural (Sado 22H.02) 
Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 
São Manços (Guadiana 23K.01) 

13 1945-1982 Homogeneous data 

Guadiana 22L.01 Redondo 

São Manços (Guadiana 23K.01) 
Lisboa Geofísica (ECA 675) 
Relíquias (Mira 27G.01) 
Santiago do Escoural (Sado 22H.02) 

13 1945-1982 Break: 1963 

TESTS FOR REFERENCE SERIES 
Santiago do Escoural (Sado 22H.02) 
Alcáçovas (Sado 23I.01) 

14 
32m 1941-1997 Homogeneous data 

ECA&D 675 Lisboa Geofísica 
Santiago do Escoural (Sado 22H.02) 
Alcáçovas (Sado 23I.01) 17 1956-1995 Homogeneous data 
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BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME 

REFERENCE SERIES 
(In light gray: independent variables, 
non significant at the 5% level, that 
were removed from the models) 

MODEL 
('m' indicates average of 

references as 
independent variable) 

PERIOD SUR + Ellipse 
(5% level) 

Barragem da Bravura (Rib. Algarve 
30E.03) 
Azinheira Barros (Sado 25G.01) 

15 1959-1997 Homogeneous data 

Arade 30G.01 Alferce Barragem da Bravura (Rib. Algarve 
30E.03) 
Azinheira Barros (Sado 25G.01) 

21 1959-1999 Break: 1984 

Arade 30H.04 Santa Margarida 
Barragem da Bravura (Rib. Algarve 
30E.03) 
Relíquias (Mira 27G.01) 

16 
28m 1965-1999 Homogeneous data 

São Manços (Guadiana 23K.01) 
Azinheira Barros (Sado 25G.01) 17 1956-1995 Homogeneous data 

Ribeiras do Algarve 30E.03 Barragem da Bravura 
São Manços (Guadiana 23K.01) 
Azinheira Barros (Sado 25G.01) 22 1956-1994 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 14 
32m 1941-1997 Homogeneous data 

Alcáçovas (Sado 23I.01) 18 1940-1997 Homogeneous data Mira 27G.01 Relíquias 

Santiago do Escoural (Sado 22H.02) 19 1940-1997 Homogeneous data 
Arronches (Guadiana 19N.01) 18 1940-1997 Homogeneous data 
Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 

22 
29m 1956-1994 Homogeneous data 

Break: 1960 Sado 22H.02 Santiago do Escoural 
Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 27 1932-1973 Homogeneous data 

Arronches (Guadiana 19N.01) 19 1940-1997 Homogeneous data 
Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 20 1951-1999 Homogeneous data 

Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 24 1943-1999 Break: 1960 

Sado 23I.01 Alcáçovas 

Arronches (Guadiana 19N.01) 
Relíquias (Mira 27G.01) 

26 
30m 1956-1999 Homogeneous data 

Sado 25G.01 Azinheira Barros São Manços (Guadiana 23K.01) 
Lisboa Geofísica (ECA 675) 20 1951-1999 Homogeneous data 
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BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME 

REFERENCE SERIES 
(In light gray: independent variables, 
non significant at the 5% level, that 
were removed from the models) 

MODEL 
('m' indicates average of 

references as 
independent variable) 

PERIOD SUR + Ellipse 
(5% level) 

Azinheira Barros (Sado 25G.01) 
Barragem da Bravura (Rib. Algarve 
30E.03) 

21 1959-1999 Homogeneous data 

Sado 26I.02 Barragem do Roxo Azinheira Barros (Sado 25G.01) 
Barragem da Bravura (Rib. Algarve 
30E.03) 

23 1966-2000 Homogeneous data 

Sado 27H.01 Panóias Azinheira Barros (Sado 25G.01) 
São Manços (Guadiana 23K.01) 

22 
29m 1956-1994 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Relíquias (Mira 27G.01) 15 1959-1997 Homogeneous data 

Santiago do Escoural (Sado 22H.02) 
Relíquias (Mira 27G.01) 17 1956-1995 Homogeneous data Guadiana 19N.01 Arronches 

Santiago do Escoural (Sado 22H.02) 
Relíquias (Mira 27G.01) 23 1966-2000 Break: 1988 

Guadiana 19O.02 Barragem do Caia 
Barragem da Bravura (Rib. Algarve 
30E.03) 
Azinheira Barros (Sado 25G.01) 

23 1966-2000 Homogeneous data 

Guadiana 23K.01 São Manços Lisboa Geofísica (ECA 675) 24 1943-1999 Break: 1950 

Guadiana 26M.01 Herdade de Valada Barragem do Roxo (Sado 26I.02) 
Azinheira Barros (Sado 25G.01) 25 1969-1999 Homogeneous data 

Barragem da Bravura (Rib. Algarve 
30E.03) 

26 
30m 1956-1999 Homogeneous data 

Guadiana 30J.01 Barranco do Velho 
Barragem da Bravura (Rib. Algarve 
30E.03) 31m 1956-1999 Homogeneous data 

Guadiana 30J.02 Catraia Arronches (Guadiana 19N.01) 27 1932-1973 Homogeneous data 
Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 

16 
28m 1965-1999 Homogeneous data 

Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 21 1959-1999 Homogeneous data 

Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 25 1969-1999 Homogeneous data 

Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 

26 
30m 1956-1999 Homogeneous data 

Guadiana 30L.04 Alcaria (Castro Marim)

Lisboa Geofísica (ECA 675) 
Arronches (Guadiana 19N.01) 31m 1956-1999 Homogeneous data 
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Table 3 – Summary results from the relative testing approach: break years identified by at least one of the relative procedures, relative magnitudes (%) of 
the breaks and length of homogeneous periods 

BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME PERIOD BREAK YEARS 
MAGNITUDE 

OF 1st 
BREAK 

MAGNITUDE 
OF 2nd 
BREAK 

LENGTH 
OF 1st 

HOMOG. 
PERIOD 

LENGTH 
OF 2nd 

HOMOG. 
PERIOD 

LENGTH 
OF 3rd 

HOMOG. 
PERIOD 

ECA&D 666 Beja 1941-1999             
ECA&D 709 Badajoz Talavera 1955-2000 1975 -1.91%   20 25   
Ribeiras do Algarve 30E.01 Aljezur 1932-1999 1968 3.67%   36 31   
Ribeiras do Algarve 30K.02 Picota 1957-1999 1988 -2.41%   31 11   
Mira 28F.01 Odemira 1932-1994 1952 -7.60%   20 42   
Mira 28H.01 Aldeia de Palheiros 1932-1996             
Mira 29G.01 Sabóia 1932-1994 1949 + 1984 4.71% 17.26% 17 35 10 
Sado 23E.01 Comporta 1934-2000 1986 10.23%   52 14   
Sado 24I.01 Viana do Alentejo 1934-2000             
Guadiana 21K.01 Azaruja 1944-1982             
Guadiana 22L.01 Redondo 1945-1982 1963 13.71%   18 19   
TESTS FOR REFERENCE SERIES 
ECA&D 675 Lisboa Geofísica 1941-1999             
Arade 30G.01 Alferce 1959-1999 1984 8.06%   25 15   
Arade 30H.04 Santa Margarida 1965-1999 1978 -12.10%   13 21   
Ribeiras do Algarve 30E.03 Barragem da Bravura 1956-2000             
Mira 27G.01 Relíquias 1932-2000 1969 3.48%   37 31   
Sado 22H.02 Santiago do Escoural 1932-1999 1960 + 1988 6.88% -8.94% 28 28 11 
Sado 23I.01 Alcáçovas 1932-2000 1960 -3.96%   28 40   
Sado 25G.01 Azinheira Barros 1951-2000             
Sado 26I.02 Barragem do Roxo 1959-2000             
Sado 27H.01 Panóias 1956-1994             
Guadiana 19N.01 Arronches 1932-1999 1954 + 1988 5.03% -0.57% 22 34 11 
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BASIN / NETWORK 
STATION 
CODE / 
ID 

STATION NAME PERIOD BREAK YEARS 
MAGNITUDE 

OF 1st 
BREAK 

MAGNITUDE 
OF 2nd 
BREAK 

LENGTH 
OF 1st 

HOMOG. 
PERIOD 

LENGTH 
OF 2nd 

HOMOG. 
PERIOD 

LENGTH 
OF 3rd 

HOMOG. 
PERIOD 

Guadiana 19O.02 Barragem do Caia 1965-2000             
Guadiana 23K.01 São Manços 1943-2000 1950 -0.52%   7 50   
Guadiana 26M.01 Herdade de Valada 1969-2000 1995 -10.11%   26 5   
Guadiana 30J.01 Barranco do Velho 1956-1999 1976 + 1996 10.78% -14.09% 20 20 3 
Guadiana 30J.02 Catraia 1932-1973             
Guadiana 30L.04 Alcaria (Castro Marim) 1947-1999             
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Table 1 – Number of records flagged through basic quality control procedures and overall classification of the daily precipitation series 

SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

ECA&D 666 Beja   11 Suspect Relative break(s) detected could not be explained by non-
climatic factors 

ECA&D 675 Lisboa Geofísica   2 Useful All relative approaches considered the series as 
homogeneous 

ECA&D 681 Tavira   2 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

ECA&D 709 Badajoz Talavera     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Arade 29I.01 São Barnabé   15 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Arade 30F.01 Monchique   6 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Arade 30G.01 Alferce     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Arade 30H.04 Santa Margarida     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 29F.01 Cimalhas     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 29F.02 Foz do Farelo     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 30E.01 Aljezur 2   Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 30E.02 Marmelete     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 30E.03 Barragem da Bravura   2 Useful All relative approaches considered the series as 
homogeneous 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Ribeiras do Algarve 30H.03 São Bartolomeu de Messines     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 30H.05 Paderne     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 30K.02 Picota 62 4 Useful 

Relative break(s) detected might be explained by several 
months without records 
Note: it is advisable to set to missing the records of Dec. 
1972 and Dec. 1973 

Ribeiras do Algarve 30L.03 Faz-Fato     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 31E.01 Lagos   2 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Ribeiras do Algarve 31G.02 Porches   2 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 31H.02 Algoz   2 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 31J.01 São Brás de Alportel   4 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 31J.04 Estoi     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 31K.01 Santa Catarina (Tavira)     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Ribeiras do Algarve 31K.02 Quelfes     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Mira 27G.01 Relíquias     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Mira 28F.01 Odemira   2 Useful Relative break(s) detected might be explained by several 
months without records 

Mira 28G.01 Barragem de Mira   2 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Mira 28H.01 Aldeia de Palheiros     Useful All relative approaches considered the series as 
homogeneous 

Mira 28H.03 Santana da Serra     Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Mira 29G.01 Sabóia   4 Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Mira 29I.02 Santa Clara-a-Nova     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 21G.01 Vendas Novas   4 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Sado 22E.01 Águas de Moura     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 22F.03 Moinhola     Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Sado 22H.02 Santiago do Escoural     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Sado 23E.01 Comporta   2 Useful Relative break(s) detected might be explained by several 
months without records 

Sado 23F.01 Montevil   12 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 23G.01 Barragem de Pego do Altar     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 23I.01 Alcáçovas 1   Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Sado 24F.01 Grândola     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Sado 24H.02 Barragem do Vale do Gaio     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Sado 24I.01 Viana do Alentejo     Useful All relative approaches considered the series as 
homogeneous 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Sado 24I.03 Barragem de Odivelas   5 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Sado 24J.02 Alvito     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 25G.01 Azinheira Barros   4 Useful All relative approaches considered the series as 
homogeneous 

Sado 25I.01 Ferreira do Alentejo     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Sado 26F.02 Barragem de Campilhas   2 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Sado 26I.01 Santa Vitória     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Sado 26I.02 Barragem do Roxo     Useful All relative approaches considered the series as 
homogeneous 

Sado 26I.03 Aljustrel   4 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Sado 27G.02 Garvão (Montinho)     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Sado 27H.01 Panóias     Useful All relative approaches considered the series as 
homogeneous 

Sado 27H.02 Barragem do Monte da Rocha     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 18N.01 São Julião     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 18N.02 Alegrete     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 19N.01 Arronches     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Guadiana 19N.02 Santa Eulália     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Guadiana 19N.03 Esperança     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 19O.02 Barragem do Caia   2 Useful All relative approaches considered the series as 
homogeneous 

Guadiana 19O.03 Degolados     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 20O.02 Caia (M. Caldeiras)   2 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 21K.01 Azaruja     Useful All relative approaches considered the series as 
homogeneous 

Guadiana 21M.01 Vila Viçosa     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 21M.02 Alandroal   2 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 21N.01 Juromenha     Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 22L.01 Redondo     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Guadiana 22L.02 Santa Susana   2 Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 22M.01 Santiago Maior     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 23K.01 São Manços     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Guadiana 23L.01 Reguengos     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 24J.03 Cuba     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 24K.01 Portel     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Guadiana 24K.02 Vidigueira     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 24N.01 Amareleja (D.G.R.N.)     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 25L.01 Pedrogão do Alentejo     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 25N.01 Sobral da Adiça     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 25O.01 Santo Aleixo da Restauração   5 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 25P.01 Barrancos     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 26J.04 Albernoa     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 26K.01 Salvada     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 26L.01 Serpa     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 26L.02 Santa Iria   2 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 26M.01 Herdade de Valada   5 Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Guadiana 27I.01 Castro Verde 4 13 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 27J.01 São Marcos da Ataboeira     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 27J.02 Corte Pequena     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 27J.03 Vale de Camelos     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Guadiana 27K.01 Algodôr     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 27K.02 Corte da Velha     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28I.01 Almodôvar 1   Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28J.01 Alcaria Longa     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28J.03 Santa Barbara de Padrões     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28K.01 São João dos Caldeireiros     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28K.02 Álamo     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 28L.01 Mértola     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 29J.05 Guedelhas     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 29K.01 Martim Longo   7 Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 29K.03 Malfrades     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 29K.04 Penedos   2 Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 29L.01 Pereiro     Potentially suspect Absolute break(s) detected could not be explained by non-
climatic factors 

Guadiana 29L.03 Monte dos Fortes     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 29M.01 Alcoutim 2191 12 Potentially suspect 
Absolute break(s) detected could not be explained by non-
climatic factors.   Note: it is advisable to set to missing the 
records of 1954-59 
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SUBJECTIVE 
FLAGGING 

‘FLAT LINE’ 
CHECK 

FLAGGING 
BASIN / 
NETWORK 

STATION 
CODE / ID STATION NAME Num. 

Records 
flagged as 

(3) ‘suspect’ 

Num. 
Records 

flagged as 
(1) ‘suspect’ 

SERIES OVERALL 
CLASSIFICATION CRITERION / COMMENTS 

Guadiana 30I.02 Sobreira     Potentially useful Absolute break(s) detected might be explained by several 
months without records 

Guadiana 30J.01 Barranco do Velho     Suspect Relative break(s) detected could not be explained by non-
climatic factors 

Guadiana 30J.02 Catraia   2 Useful All relative approaches considered the series as 
homogeneous 

Guadiana 30K.01 Mercador     Potentially useful Short-term series previously classified as 'useful' (the 6 
absolute tests considered the series as homogeneous) 

Guadiana 30L.04 Alcaria (Castro Marim)   2 Useful All relative approaches considered the series as 
homogeneous 

 



 

 

 

 

 

Appendix V LOCAL CORRELATION MODELS FOR THE 

WETNESS INDICES AND DISTANCE TO THE COASTLINE 
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Local correlation models for the wetness indices and distance to the coastline 

In order to determine local correlation models for the wetness indices (R5D and R30) 

and distance to the coastline according to the SW direction, first, the relationships were 

assessed locally by computing, for each decade, Pearson's correlation coefficients using 

stations' data falling within a circle centred at each station's location. As in earlier 

decades meteorological stations are scarce, larger radii were used (Table 1). Second, the 

DSS algorithm was applied to interpolate the local correlations by decade, and 50 

simulated maps of local correlations were obtained for each index. 

Table 1 – Radii of the search neighbourhoods used to calculate the local correlations 

Decade Radius (m) 

1940/49 65000 

1950/59 50000 

1960/69 50000 

1970/79 40000 

1980/89 35000 

1990/99 35000 

These procedures used space-time spherical variograms of the local correlations, where 

the spatial dimension was modelled as isotropic. For the R5D index, the estimated range 

of the spatial dimension was 75000 meters, the range of the temporal dimension was 5 

decades, and the estimated sill was 0.063. For the R30 index, the estimated range of the 

spatial dimension was 70000 meters, the range of the temporal dimension was 4.5 

decades, and the estimated sill was 0.069. 

The correlation models were then determined by computing the mean of the distribution 

of 50 simulated values at each grid node, by decade (Figure 1 and Figure 2). 
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Figure 1 – Local correlation models between R5D values and distance to the coastline 
(SW) for each decade 
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Figure 2 – Local correlation models between R30 values and distance to the coastline (SW) 
for each decade 




