EXPLORATORY GEOSPATIAL DATA ANALYSIS USING SELF-ORGANIZING MAPS

Case Study of Portuguese Mainland Regions

Main Topics
- Introduction
- Aim of the study
- Study Methodology
- Experimental Results
- Discussion
- Conclusion

KEYWORDS
Geographical Information Systems, Exploratory Data Analysis, Self-Organizing Maps.

Introduction

- Challenges in GIS
 - increasing amounts of data collected and stored
 - most traditional statistical methods not adequate
 - very restrictive assumptions on data
 - or high computational burden
 - complexity of geographic phenomena
- New approaches needed
 - data rather than theory driven
 - transform data into information, and ultimately, into knowledge

Portuguese Mainland Regions

- Delineation of regions
 - proposals presented by several authors
 - a region is characterized by internal homogeneity

Nowadays...

- Public domain geographical data
 - Atlas do Ambiente
 - Portuguese Environmental Agency
- Source thematic maps
 - experiments

Aim of this study

- evaluate the effectiveness of SOM in the exploratory analysis of Portuguese mainland physical geography data
 - Find evidence of Portuguese mainland regions
 - search for natural regions
- Justifications for SOM application
 - ordered mapping from a high-dimensional data space to a low-dimensional space
 - preserving the topological relations in the data
 - stressing of local, regional, factors
Study Framework

- Based on a Knowledge Discovery Process - KDD
 - Based on a Knowledge Discovery Process - KDD
 - Domain knowledge and Goal Definition
 - Data Set
 - Selection, cleaning and preprocessing
 - Algorithm application
 - Data Set Reduction and Projection
 - Exploratory Analysis
 - Interpreting the mined patterns...

Data

- Selection
 - based on literature review
- Preparation
 - Map overlay and intersection
 - Normalization
 - Min-max method

Self-Organizing Map (SOM)

- Also called...
 - Kohonen network, self-organizing feature map...
- Performs both clustering and projection
 - aiming to preserve the topological relations in the data (emphasis on local factors)
- Array (lattice) of elements (units or neurons)
 - arranged in a low dimensionality grid (1D or 2D), the map, for ease of visualization.
- Training:
 - units follow data distribution (DEMO)

Issues in SOM

- SOM application to geospatial data
 - Discrete nature of SOM
 - Enforce SOM geospatial unfolding
 - geo-initialization,
 - weighting of location and samples
 - SOM variant (Geo-SOM)
 - visualization aids to picture SOM grid unfolding.
 - methods to extract and present information from SOM
 - thematic maps of U-mat as groundwork for exploratory analysis.

Visualization aids

- SOM grid
 - projected on location plane
 - color and width of lattice is function of U-mat
- Thematic Maps of U-mat
 - U-mat
 - graphical representation of SOM output
 - each area gets the U-mat value from its BMU
 - high U-mat values (red) separate regions
- Component Planes

Experimental results

- Software
 - Simulation on MatLab with SOM Toolbox 5
 - Geo-processing: ArcGIS 8
- Standard SOM
 - sample weighting with area
 - location weight: 8
 - map size: 24x7
Discussion

- Geographic perspective in SOM
 - Geo-initialization
 - Location and sample weighting
- SOM output visualization
 - SOM grid
 - evaluate SOM unfolding
 - Thematic maps of U-mat
 - assist revealing local similarities between nearby areas
 - patterns reveal regions
- Component planes
 - characterize regions

Map Sketch of Regions

- Based on experiments with Geo-SOM

Conclusion

- No crisp borders delimiting most regions
 - fuzzy, vague, character of geographic phenomena.
 - agreement with reference maps of regions
- SOM
 - effectiveness of SOM in the exploratory analysis
 - physical geography data
 - search for regions