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Abstract. Regionalization and uniform/homogeneous region building consti-
tutes one of the most longstanding concerns of geographers. In this paper we 
explore the Geo-Self-Organizing Map (Geo-SOM) as a tool to develop homo-
geneous regions and perform geographic pattern detection. The Geo-SOM pre-
sents several advantages over other available methods. The possibility of 
“what-if” analysis, coupled with powerful visualization tools and the accom-
modation of spatial constraints, constitute some of the most relevant features of 
the Geo-SOM. In this paper we show the opportunities made available by this 
tool and explore different features which allow rich exploratory spatial data 
analysis.  

1 Introduction 

Small area census data constitute a major data source in Geographic Information Sci-
ence (GISc). The advent of digital census boundaries and the consequent assembly of 
Geographic Information Systems (GISs) and census data made available huge data-
bases of small administrative geographical features characterized by high dimensional 
vectors of socio-demo-economic information.  

This fact created opportunities for developing an improved understanding of a 
number of socioeconomic phenomena that are at the heart of GISc. Nevertheless, it 
also shaped new challenges and raised unexpected difficulties for the analysis of mu l-
tivariate spatially referenced data. Today, the availability of methods able to perform 
sensible reduction on huge amounts of high dimensional data, is a central issue in sci-
ence generically and GISc is no exception.  

The urgency of transforming into information the massive digital databases that re-
sult from decennial census operations has motivated work in a number of research ar-
eas. Geodemographic typologies (Openshaw and Wymer 1995; Openshaw et al. 
1995; Birkin and Clarke 1998; Feng and Flowerdew 1998), identification of deprived 
areas (Fahmy et al. 2002), and social services provision (Birkin et al. 1999) constitute 
a few examples of subjects where private and public organizations can benefit from 
techniques that can isolate important trends and patterns from such large datasets , al-
though many more can benefit (i.e., research on suburbanization, residential segrega-
tion, immigrant settlement patterns, rural depopulation, etc.).  



The challenge is to take advantage of new computationally intensive tools made 
available in research areas like knowledge discovery (Fayyad et al. 1996; Han and 
Kamber 2000; Miller and Han 2001), which are particularly adapted to process large 
quantities of data. Nevertheless, it is fundamental to introduce some kind of spatial 
reasoning into these methods (Openshaw et al. 1995), as spatial data comprises spe-
cial characteristics (Anselin 1990) and spatial analysis should not ignore some impor-
tant paradigms (e.g., the 1st Law of Geography (Tobler 1970)). 

In this paper we put forward a new tool, based on the Self-Organizing Map (Koho-
nen 1982; Kohonen 2001), for the development of homogeneous regions and spatial 
pattern detection. Here the zone design problem is approached as a tool for discovery 
and spatial data exploration and reduction. The idea is to provide a tool that enables 
the user to interact and explore spatial data, emphasizing the fuzzy nature of most 
classifications, allowing for “what-if” analysis and providing rich visualization con-
text for exploratory analysis. 

The improvements pursued here lie on the capability of introducing more geo-
graphical knowledge within the classification process. The option in this work is to 
emphasize the importance of the geo prefix in small area analysis. In this paper we 
develop the Geo-SOM which consists of variants of the original Self-Organizing Map 
(SOM), and is particularly adapted to process and deal with specific features of spatial 
data, such as geographic location. 

2 Discovery and Exploration through Zone Design 

In the context of GISc the zone design problem constitutes a paradox as it can be seen 
both as a problem and an opportunity. On one hand the detrimental effects of arbitrary 
zoning in administrative and statistical area reporting have plagued geographic-based 
research (Openshaw 1984; Fotheringham and Wong 1991; Amrhein 1995). On the 
other hand, computational and algorithmic evolution created the opportunity to trans-
form the problem into a valuable exploratory tool in spatial analysis (Openshaw 1984; 
Wise et al. 1997; Guo et al. 2003). 

Haggett et al. (1977) propose three different types of regions which they classified 
as uniform regions; nodal regions; and planning or programming regions. Usually, 
planning or programming regions are developed with a specific and well-defined pur-
pose in mind. They tend to result from explicit needs of institutions that have to man-
age territorial dispersed activities, providing a management perspective on zone de-
sign. Examples of this are the problem of electoral districting (Horn 1995; George et 
al. 1997; Mehrotra et al. 1998; Macmillan and Pierce 1994), sales territories (Leisch-
mann and Paraschis 1998), police reporting areas (Sarac et al. 1999), and census out-
put Areas  (Martin 1997; Martin 1998). Uniform and nodal regions can be viewed as 
having a fairly exploratory nature, as they usually assist research and discovery proc-
esses. Although it is difficult to produce a clear-cut differentiation between zone de-
sign as a management tool and zone design as a discovery tool, some distinctions can 
be made. 

Typically, zone design as a management tool assumes restrictive constraints on the 
geographic configuration of the resulting regions. Thus, the contiguity constraint is 



usually present and compactness is generally considered a desirable characteristic. 
The rationale behind the construction of the algorithms is to produce highly efficient 
procedures that make use of computational resources and improved optimization tech-
niques to eventually arriving at global optimum solutions. An optimality criterion is 
previously defined and needs to be encoded into the optimization procedure. 

In the case of zone design as a discovery and exploratory tool the aim is more fo-
cused on evaluating different possibilities, probably using fewer and less restrictive 
constraints on the geographic configuration of the resulting zonal systems. Here the 
main objective is to, “let data speak for themselves” (Gould 1981). This way, strict 
geographic constraints , such as contiguity, and the need to define in advance the 
number of regions can be interpreted as restrictive factors that might obscure the iden-
tification of interesting patterns. As a discovery tool, regionalization can be seen as a 
pre-processing method, which is used to generate the basic units for subsequent analy-
sis (Haining et al. 1994). Additionally it can be used to detect particular areas with 
specific characteristics. 

Logically, the differences expressed above have a major impact on the specifica-
tions of the algorithms developed to deal with zone design. Exploratory zone design 
algorithms should allow for user interaction, because the objectives  are somewhat 
fuzzy, and an adequate human/system interaction can guide an otherwise “black box” 
clustering process (Guo et al. 2003). The critical analysis of the results, which can be 
provided by skilled analysts , can be a valuable contribution, and algorithms should 
provide adequate means for result interpretation and diagnosis. Additionally, the pos-
sibility of “what-if” analysis can be a helpful addition in the sense that it allows prob-
ing based on prior knowledge and prompt evaluation between different design op-
tions. Finally, visualization capabilities of the algorithms should take advantage of 
GIS technology and, if possible, push forward analysis based on visualization tools. 

3 Characteristics of Typologies Based on Small Area Census Data 

We briefly review some of the major characteristics of small area census data typolo-
gies. These characteristics constitute the motivation for the development of the Geo-
SOM. 

3.1 The fuzziness associated with small area typologies 

According to Feng and Flowerdew (1998) there are two different types of fuzziness in 
typologies developed from small area census data: one related with the attribute 
space, the other associated with the geographical space. The first kind of fuzziness is 
due to the “all or nothing nature of the classification assignment” (Openshaw et al. 
1995), which conceals the fact that enumeration districts (EDs) may be close to more 
than one neighbourhood type in the attribute space. 

The geographical fuzziness comes from the arbitrary nature of the EDs, which 
serve as the elementary units on which typologies are based, the well known problem 
of the modifiable areal unit problem (Openshaw 1984). In fact, the nature of these 
units reflects the operational needs that steer data collection, and for that matter 



should not be assumed to have any type of homogeneity in terms of socioeconomic 
characteristics (Morphet 1993). Although near things are more related than distant 
things (Tobler 1970), the problem lies with the fact that the scale on which this em-
pirical regularity can be observed does not have to coincide with the scale represented 
by the EDs. The neighbourhood effects might be expressed at different scales in dif-
ferent areas of the study region and only fortuitously (probably only miraculously) 
will coincide with the scale denoted by the EDs. 

3.2 Resolution and precision issues 

Openshaw et al. (1995) point out problems related with the variability in the size of 
EDs, which influence the precision and resolution of data. This variation is not ran-
dom and often reflects the duality of urban-rural areas. In urban areas , EDs tend to be 
more densely populated, which results in mixed characteristics but with accurate val-
ues. On the other hand, rural EDs tend to be more homogeneous, but also present 
more extreme results due to their sizes. Conventional classifiers give equal impor-
tance to each ED, this will result in a better representation of extreme results and a 
poor representation of more mixed ED, this way the least reliable results will benefit 
from a better representation (Openshaw et al. 1995). 

Another relevant issue that needs to be pointed out is the reliability and statistical 
significance of relations found at the ED level. For instance, when linking health data 
and census data it is fundamental that areas have large enough populations to ensure 
that rates are reliable; additionally, these areas should be homogeneous with respect to 
relevant socioeconomic attributes (Haining et al. 1994). 

3.3 The relevance of providing geographical context 

A lot of work in this area is related to the field of geodemographics, where the main 
focus has been on developing highly efficient variance optimizers, and for this reason 
little if any attention has been given to the geographical context of the data. In fact, it 
is clear that the inclusion of contiguity restrictions (Openshaw and Wymer 1995) or 
geographic references (Lobo et al. 2004) will increase the variance of the resulting 
clusters. Nevertheless the question is: will this variance reduction frenzy improve ty-
pologies? Probably no one can answer this question. Nevertheless, we argue that it is 
geographically coherent to provide a geographical framework in small area based ty-
pologies. This is especially pertinent in the light of the characterization provided 
above, which points to all sorts of fuzziness and uncertainty when dealing with small 
area census data. The geographical framework can allow the identification of regulari-
ties, the detection of unusual EDs, and the discovery of boundaries where major shifts 
in the phenomena under study occur. Within its geographic context , the possibility of 
sorting out and understanding the fuzziness in data is much higher. Clearly the as-
sumption here is that the studied phenomena happens at a smaller scale than the scale 
that characterizes the EDs. 



4 Self Organizing Maps (SOM) 

Although the term “Self-Organizing Map” could be applied to a number of different 
approaches, we use it as a synonym of Kohonen’s Self Organizing Map, or SOM for 
short. The basic idea of a SOM is to map the data patterns onto an n-dimensional grid 
of neurons or units. That grid forms what is known as the output space, as opposed to 
the input space, which is the original space where the data patterns are. This mapping 
tries to preserve topological relations (i.e., patterns that are close in the input space 
will be mapped to units that are close in the output space, and vice-versa). The SOM 
algorithm for training a 2-dimensional map may be defined as follows: 

Let 

 X be the set of n training patterns x1, x2,..xn 

 W be a p×q grid of units wij where i and j are 
  their coordinates on that grid 

 α  be the learning rate, assuming values in 
  ]0,1[, initialized to a given initial  
  learning rate 

 r be the radius of the neighborhood function 
  h(wij,wmn,r),initialized to a given initial 
  radius 

 

1 Repeat 

2  For k=1 to n 

3   For all wij∈W, calculate dij = || xk - wij || 

4    Select the unit that minimizes dij as the 
    winner wwinner 

5    Update each unit wij∈W: wij = wij +  
    α h(wwinner,wij,r) ||xk–wij || 

6  Decrease the value of α and r 

7 Until α reaches 0 

To visualize the results of a SOM, we may use U-Matrices (Ultsch and Siemon 
1990). This is a representation of a SOM in which distances, in the input space, be-
tween neighbouring neurons are represented, usually by a colour code. If distances 
between neighbouring neurons are small, then these neurons represent a cluster of pat-
terns with similar characteristics. If the neurons are far apart, then they are located in 
a zone of the input space that has few patterns and can be seen as a separation be-
tween clusters. Thus, a visual inspection of the U-Matrices allows the user to identify 
different clusters of data with variable “similarity resolution.” 



For a thorough review the reader is referred to Kohonen (2001). SOMs have been 
used in many different areas, and in geographical problems they have been used to 
perform nonlinear mappings (Skupin 2003), clustering (Openshaw et al. 1995; Painho 
and Bação 2000), and in localization problems (Gomes et al. 2004; Hsieh and Tien 
2004). Most of these applications focus either on the geographical coordinates or on 
the other features. However, to address the issues of homogeneous and geographically 
coherent region design, it is necessary to give special attention to geographical coor-
dinates and at the same time use the non-geographical features for clustering. We 
identified two distinct ways of doing so (Figure 1). The first consists of including the 
geographical coordinates in the pattern vector, and giving them increasing importance 
(Lobo et al. 2004). The second is a new SOM architecture, which we named Geo-
SOM, and in this paper we discuss its relation with other well known architectures. 

Geographicaly oriented SOMs

Standard SOMs using
geo-coordinates as features,

with a weighing factor α

Geo-SOM with a 
geographical tolerance k

Geographicaly oriented SOMs

Standard SOMs using
geo-coordinates as features,

with a weighing factor α

Geo-SOM with a 
geographical tolerance k

 

Fig. 1. Types of geographically oriented SOMs 

 

4.1 Geographically oriented SOMs  

In the SOM training algorithm, the most important step in establishing which patterns 
are clustered together is the one where we choose the Best Matching Unit (BMU). In 
the basic SOM this is done by comparing all components of the input pattern with all 
components of each unit (and normally calculating the distance between these two 
vectors). By changing the way the BMU is selected, we can give greater importance 
to the geographical coordinates. 

One way of doing this is simply to include these coordinates in the pattern vector, 
and scaling them by a parameter a . If a =0 the geographical coordinates have no im-
portance whatsoever, whereas if a=8, only these are relevant. In this latter case, the 
BMU will always be the unit geographically closer, and the update proces s will sim-
ply calculate local averages of the other parameters. By observing the way in which 
these local averages differ (normally with a U-Matrix) we may establish regions with 
the desired regularity. 



The same basic approach of including the geographical coordinates in the data pat-
tern can be used with most other SOM variants, such as Hierarchical SOMs (Ichiki et 
al. 1991; Behme et al. 1993) or ASSOM (Kohonen 2001). 

4.2 Geo-SOM 

Another way of forcing the BMU to be in the geographical vicinity of the input pat-
tern is to explicitly divide the search for the BMU in two phases: first establish a geo-
graphical vicinity where it is admissible to search for the BMU, and then perform the 
final search using the other components. The vicinity where we search for the BMU 
can be controlled by a parameter k, defined in the output space1. If we choose k=0, 
then the BMU will necessarily be the unit geographically closer. If we allow k to 
grow up to the size of the map then we will ignore the geographical coordinates alto-
gether. 

When k=0, the final locations in the input space of the units will be a quasi-
proportional representation of the geographical locations of the training patterns (for a 
discussion on the proportionality between units and training patterns see (Cottrell et 
al. 1998)), and thus the units will have local averages of the training vectors. Exactly 
the same final result may be obtained by training a standard SOM with only the geo-
graphical locations, and then using each unit as a low pass filter of the non-geographic 
features. The exact transfer function (or kernel function) of these filters depends on 
the training parameters of the SOM, and is not relevant for this discussion. 

As k (the geographic tolerance) increases, the unit locations will no longer be 
quasi-proportional to the locations of the training patterns, and the “equivalent filter” 
functions of the units will become more and more skewed, eventually ceasing to be 
useful as models. 

Formally, the Geo-SOM may be described by the following algorithm: 

Let 

 X be the set of n training patterns x1,  
  x2,..xn, each of these having a set of  
  components geoi and another set ngfi. 

 W be a p×q grid of units wij where i and j are 
  their coordinates on that grid, and each of 
  these units having a set of components wgeoij 
  and another set wngfij. 

 α  be the learning rate, assuming values in 
  ]0,1[, initialized to a given initial 
  learning rate 

                                                                 
1   The geographical tolerance k could be defined in the input space. This would lead to a fixed 

geographical radius where clustering would be allowed to occur. Choosing k in the output is 
preferable since it allows a finer resolution in areas with greater pattern density and a coarser 
resolution in the rest of the space. 



 r be the radius of the neighborhood function 
  h(wij,wmn,r), initialized to a given initial 
  radius 

 k be the radius of the geographical BMU that 
  is to be searched 

 f be a logical variable that is true if the 
  units are at fixed geographical locations.    

 

1 Repeat 

2  For m=1 to n 

3   For all wij∈W,  

4   Calculate dij = ||wgeok - wgeoij|| 

5    Select the unit that minimizes dij as the 
    geo-winner wwinnergeo 

6    Select a set Wwinner of wij such that the 

    distance in the grid between wwinnergeo and 

    wij is smaller or equal to k. 

7    For all wij∈Wwinner, 

8    calculate dij = ||xk - wij|| 

9     Select the unit that minimizes dij as the 
     winner wwinner 

10    If f is true, then  

11     Update each unit wij∈W: wngfij = wngfij + 
     α h(wngfwinner,wngfij,r) ||xk – wij|| 

12    Else 

13     Update each unit wij∈W: wij = wij + 
     α h(wwinner,wij,r) ||xk – wij|| 

14  Decrease the value of α and r 

15 Until α reaches 0 

4.3 Comparison between Standard SOM and Geo-SOM 

In both approaches (Standard and Geo-SOM), geographical coordinates can be the 
only relevant feature (when a=8 or k=0), or they may be irrelevant (when a=0 or 
k=maximum size of map), and thus in both limits the approaches produce the same 



result (Figure 2). In practical terms it is easier and more efficient to use the Geo-SOM 
when geographical coordinates are very important, and the standard SOM otherwise. 

Non
geographic

features

Only
geographic

features

Standard SOM, with increasingα

Geo-SOM, with increasing k

α=1

Non
geographic

features

Only
geographic

features

Standard SOM, with increasingα

Geo-SOM, with increasing k

α=1

 

Fig. 2. Different models for standard SOM and Geo-SOM 

 
The Geo-SOM architecture is closely related to the hypermap architecture (Koho-

nen 1991), the spatio-temporal SOMs (Chandrasekaran and Palaniswami 1995; 
Chandrasekaran and Liu 1998; Euliano and Principe 1996; Euliano and Principe 
1999), and in the kangas map (Kangas 1992) adapted to spatial coordinates (Lobo et 
al. 2004). However, a thorough discussion of these relationships is outside the scope 
of this paper. 

Finally, when using the Geo-SOM, we may include the geographical coordinates in 
the final search for the BMU, thus obtaining a continuum of models between the pure 
Geo-SOM and the pure standard SOM. For the sake of simplicity we call all these 
models Geo-SOM, and in our experimental tests we used the geographical coordi-
nates in the final search for the BMU, with a=1. 

5 Some Experimental Results 

In order to test the Geo-SOM, we used two datasets. One of them is a very simple ar-
tificial problem with only one non-geographic feature. It was used to understand some 
basic properties of the Geo-SOM. The other dataset refers to EDs of the Lisbon Met-
ropolitan Area and includes 3,968 EDs, which are characterized based on 65 vari-
ables. The Geo-SOM was implemented in Matlab® compatible with Somtoolbox 
(Vesanto et al. 2000), and is available at 
www.isegi.unl.pt/docentes/vlobo/projectos/programas. 



5.1 The Artificial Dataset 

For this example we used a set of 200 data points evenly spaced on a surface with co-
ordinates x∈[0,1], y∈[0,2]. Each point is associated with a single feature z, which is 0 
whenever 0.5<y<1.5 and 10 otherwise (Figure 3). 

 

Fig. 3. The artificial dataset 

 
If we cluster the data based on non-geographical features, then we will have two 

very well defined clusters: one where z=10, another where z=0 (Figure 4). If we con-
sider only geographical coordinates, then we will have no well defined clusters, since 
the points are evenly spaced. If we consider all three components, we may or may not 
obtain well defined clusters. If no pre-processing is done, and since in this case the 
geographical features have a very small scale when compared to the other feature, we 
will basically obtain only two clusters. If we pre -process the data points to have ap-
proximately the same scale in all components, we will obtain rather fuzzy clusters. 
Depending on the different scalings, we may obtain 1, 2, or 3 clusters, but never clear-
cut separations. A Geo-SOM with 0-tolerance will simply calculate local averages, 
and thus will just smooth the original dataset, and the three clusters will still appear 
clearly in the U-matrix. The best results are obtained using a Geo-SOM with k=2 
(Figure 5). It is interesting to note that a  0-tolerance in the Geo-SOM produces 
blurred clusters, while relaxing this constraint will allow the clusters to define them-
selves better without loosing their geographic localization. 



 

Fig. 4. U-matrix obtained for the artificial dataset with the standard SOM  

 

Fig. 5. U-Matrix obtained for the artificial dataset with Geo-SOMs 

 

5.2 Lisbon Dataset 

For this dataset we trained SOMs with 20x30 units, and the U-matrices obtained are 
presented in Figure 6. 



 

Fig. 6. U-matrices obtained for the Lisbon dataset. In the center figure (Geo-SOM with k=4) 
one of the clearly separated clusters, which we later use as example, is marked with an ellipse 

 
The connection between the U-Matrices and the geographic map is a key issue in 

using SOM-based methods. The objective is to provide an interactive exploration en-
vironment that interconnects both spaces. At this time, this interaction is provided by 
ArcView, where the U-Matrix is geocoded, and linked to the geographic map. This 
way the selection of a unit on the U-Matrix automatically highlights the geographical 
areas that are classified in that specific unit. Through this mechanism, one can analyse 
the U-Matrix, define clusters in the data and, by selecting them in the U-Matrix, 
automatically get a “picture” of their geographic location. 

A rough analysis of these U-matrices allows us to see that the standard SOM clus-
ters most units in a single cluster (top half of the map), and separates, although not 
very clearly, a few clusters in the bottom half. An analysis of the EDs mapped onto 
these clusters shows, as expected, that while these EDs do in fact have similar charac-
teristics, they are not geographically close. The Geo-SOMs lead to a very different 
clustering.  

We would like to emphasize the exploration possibilities provided by the Geo-
SOM. After training the Geo-SOM the units were georeferenced in Lisbon’s map. 
The first aspect that is important to highlight is related with the geographic distribu-
tion of the units of the Geo-SOM. As can be seen in Figure 7 there is an important dif-
ference between the distribution of the units in the standard SOM and the Geo-SOM. 
In the Geo-SOM (with k=0 and 4) the units are geographically spread, mimicking the 
density of the centroids of the EDs. This way, the more densely populated areas will 
receive more classifying resources (i.e., more units), but sparsely populated areas will 
also receive some resources. It is quite clear from the analysis of Figure 7 that the un-
folding of the Geo-SOM is ruled by the spatial distribution of the EDs. As would be 
expected the standard SOM distributes its units in the centre of the region, as it is 
there that the global variance can be minimized. 



 

Fig. 7. Geographic distribution of Geo-SOM units for the Standard SOM (upper left), Geo-
SOM with k=4 (upper right) and Geo-SOM with k=0 (units are shown as points and ED’s cen-
troids as squares) 

 
Once the units are geocoded, the next step consists on defining to which unit is 

each ED centroid associated. This was done by generating Thiessen polygons based 
on the units and assigning each ED centroid to the nearest unit. Figure 8 shows the as-
signing process. In this particular case Lisbon’s downtown area is depicted. As it can 
be seen several Geo-SOM units are placed in the river, due to the fact that it separates 
two high-density areas. This is natural as the Geo-SOM produces a surface for the 
whole of the study area. 



 

Fig. 8. Geographic distribution of Geo-SOM units and the EDs that are mapped to them in the 
center of Lisbon (units are shown as squares and EDs centroids as points) 

 
Building homogeneous regions based on the Geo-SOM can be done in a number of 

ways. One of them is to define thresholds based on which homogeneous regions will 
be built. In Figure 9, three different thresholds are tested and as the threshold grows 
the same happens to the number of homogeneous regions. 

 

Fig. 9. Identification of homogeneous regions (darker areas represent homogeneous regions). 
The leftmost figure was obtained using a low threshold (forcing very homogeneous regions), 
and the other two were obtained using increasing thresholds 

 
This type of visualization is in effect a visualization of the U-Matrix in the geo-

graphic sub-space of the input space, as opposed to the traditional visualizations of 
that matrix in the output space (Figures 4-6). The mapping of clusters identified in the 



traditional visualization of the U-Matrix to this geographical representation, although 
not linear, is quite simple. As an example, the cluster detected in the U-Matrix of Fig-
ure 6 can be readily identified in Lisbon’s geographical map (Figure 10). 

 

Fig. 10. Map identification of the cluster detected in figure 6 U-Matrix, here with a set of five 
similar units (light shade) near a well defined “boundary” of very dissimilar units (dark shade) 

 
Similarly, if a surface is built based on the similarities of each unit and its 

neighbours , an elevation model can be developed (Figure 11). A progressive flooding 
of this surface will indicate which areas should be aggregated first. Additionally, the 
ridges indicate areas of change, where EDs present important dissimilarities. For in-
stance, areas, such as the Lisbon International Airport and Monsanto (a big green area 
with no housing within the city limits), constitute obvious transition areas, which are 
well depicted by the Geo-SOM. 



 

Fig. 11. Elevation map where ridges represent transition areas 

 

6 Conclusions  

An overview of different techniques for using SOMs as tools for designing homoge-
neous geographical regions and pattern detection was presented, and a new SOM-
based architecture, named Geo-SOM, was proposed. It was shown, both in an artif i-
cial problem and in a real problem, that this new architecture can provide better in-
sights for the region design problem. One of the advantages of using the Geo-SOM is 
related with its exploratory nature. Various ways of exploring the information pro-
vided by the Geo-SOM were explained. Finally, it was shown that this new architec-
ture provides a meaningful clustering of the Lisbon Metropolitan area given a large 
set of census data. The idea of creating a bridge between the geographic space and the 
feature space is particularly appealing, as it allows processing features and subsequent 
visualization with geographical context. The result is a partition of space, which is 
primarily ruled by the density of geographic occupation and secondly by the simila r-
ity of the patterns. Further work needs to be done in two major areas. The first one is 
related with extending the exploratory tools provided by the Geo-SOM. The second 
one is rather theoretical and regards the relations between the Geo-SOM and geo-
graphical concepts like spatial autocorrelation and spatial heterogeneity. 
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