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Abstract. One of the most widely used clustering techniques used in GISc 
problems is the k-means algorithm. One of the most important issues in the 
correct use of k-means is the initialization procedure that ultimately determines 
which part of the solution space will be searched. In this paper we briefly 
review different initialization procedures, and propose Kohonen’s Self-
Organizing Maps as the most convenient method, given the proper training 
parameters. Furthermore, we show that in the final stages of its training 
procedure the Self-Organizing Map algorithms is rigorously the same as the k-
means algorithm. Thus we propose the use of Self-Organizing Maps as possible 
substitutes for the more classical k-means clustering algorithms. 

1   Introduction 

The widespread use of computers and Geographical Information Systems (GIS) made 
available a huge volume of digital geo-referenced data (Batty and Longley 1996). 
This growth in the amount of data made multivariate data analysis techniques a 
central problem in Geographical Information Science (GISc). Amongst these 
techniques, cluster analysis (Jain, Murty et al. 1999) is one of the most used, and it is 
usually done using the popular k-means algorithm. Research on geodemographics 
(Openshaw, Blake et al. 1995; Birkin and Clarke 1998; Feng and Flowerdew 1998; 
Openshaw and Wymer 1994), urban research (Plane and Rogerson 1994; Han, 
Kamber et al. 2001), identification of deprived areas (Fahmy, Gordon et al. 2002), 
and social services provision (Birkin, Clarke et al. 1999) are examples of the 
relevance that clustering algorithms have within today’s GISc research. 

There have been a number of tests comparing SOM’s with k-means (Balakrishnan, 
Cooper et al.1994; Openshaw and Openshaw 1997; Waller, Kaiser et al. 1998). 
Conclusions seem to be ambivalent as different authors point to different conclusions, 
and no definitive results have emerged. Some authors (Flexer 1999; Balakrishnan, 
Cooper et al. 1994; Waller, Kaiser et al. 1998) suggest that SOM performs equal or 
worst than statistical approaches, while other authors conclude the opposite 
(Openshaw and Openshaw 1997; Openshaw, Blake et al. 1995).  

The main objective of this paper is to analyze the performance of the SOM and k-
means in clustering problems, and evaluate them under specific conditions. We 
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review both algorithms and then compare their performance on specific problems, 
using two synthetic datasets, and three real-world datasets. 

2   K-Means Algorithm and Its Initialization 

The k-means algorithm is widely known and used so only a brief outline is presented 
(for a thorough review see (Kaufman and Rousseeuw 1990; Fukunaga 1990; Duda, 
Hart et al. 2001)). K-means is an iterative procedure, to place cluster centers, which 
quickly converges to a local minimum of its objective function (Bradley and Fayyad 
1998; Kanungo, Mount et al. 2002). This objective function is the sum of the squared 
Euclidean distance (L2) between each data point and its nearest cluster center (Selim 
and Ismail 1984; Bradley and Fayyad 1998). This is also known as “square-error 
distortion” (Jain and Dubes 1988). It has been shown that k-means is basically a 
gradient algorithm (Selim and Ismail 1984; Bottou and Bengio 1995) which justifies 
the convergence properties of the algorithm. he original online algorithm (MacQueen 
1967) is as follows: 

Let  k be the predefined number of centroids 
  n be the number of training patterns 
  X be the set of training patterns x1, x2,..xn  
  P be the set of k initial centroids µ1, µ2,… µk taken from X 

  η be the learning rate, initialized to a value in ]0,1[ 
1 Repeat 
2  For i=1 to n 
3   Find centroid µj∈P that is closer to xi  
4   Update µj by adding to it ∆µj = η(xi - µj) 

5  Decrease η 
6  Until η reaches 0  

There are a large number of variants of the k-means algorithm. In this study we use 
the generalized Loyd’s algorithm (Duda, Hart et al. 2001), which yields the same 
results as the algorithm above (Bottou and Bengio 1995). The popularity of this 
variant in statistical analysis is due to its simplicity and flexibility. It does not, 
however, specify how the initial centroids should be selected. Due to the gradient 
nature of the algorithms, these initial centroids have a decisive effect on which areas 
of the solution space can be searched. In all but the simplest cases the solution space 
contains many local optima to which the k-means algorithm may converge. To 
guarantee that a good solution will be found, multiple initializations of the algorithms 
are usually tested, and only the best final solution is kept.  

By far the most common initialization, called “Forgy Approach” (Peña, Lozano et 
al. 1999), consists on randomly selecting k of available data patterns as centroids. 
This method has as main advantage it’s simplicity: the selection requires no prior 
knowledge or computational effort, and multiple initializations will usually cover 
rather well the solution space. This is the initialization procedure used by default by 
software packages such as SAS Enterprise Miner, Matlab, and Clementine. 
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Instead of choosing k samples, we may divide the dataset into k subsets, and then 
use the centroids of these sets as seeds. We wil call this the “random selection 
method” (Peña, Lozano et al. 1999). It is similar to calculating the centroid of the 
whole dataset and then obtaining k perturbations of this point (Thiesson, Meek et al. 
1999). More random selection based algorithms have been proposed (Kaufman and 
Rousseeuw 1990; Cano, Cordón et al. 2002; MacQueen 1967) each with specific 
strengths and weaknesses. The order by which the initial seeds are presented may 
influence the final outcome, so re-ordering techniques have been used in (Fisher, Xu 
et al. 1992) and (Roure and Talavera 1998). Sensitivity to outliers is another 
important problem that can be minimized by repeating random selection. Various 
methods can be used to repeat selection and clustering on smaller datasets, such as 
proposed by by (Bradley and Fayyad 1998). 

Genetic algorithms are a well established technique to “guide randomness”, and 
thus can be used to generate successive random selections. This approach is followed 
by (Peña, Lozano et al. 1999). Several attempts have been made to avoid randomness 
in the selection of seeds by using deterministic density estimation methods, and 
selecting the points of higher density as seeds. Such is the approach followed in 
(Bradley and Fayyad 1998), (Fukunaga 1990). Another family of initialization 
methods comes from heuristics that use the distance between candidate seeds as a 
guide for their selection (Katsavounidis, Jay Kuo et al. 1994;Al-Daoud and Roberts 
1994;Tou and González 1974). 

Hierarchical clustering algorithms are widely used and can produce meaningful 
clusters of data, but they usually do not minimize the objective function of the k-
means algorithm. They may however be used to obtain a good approximation that can 
be used as seed for it’s initialization. This approach was proposed in (Fisher 1987), 
and is used under different forms by (Higgs, Bemis et al. 1997; Snarey, Terrett et al. 
1997;Meila and Heckerman 2001). The major drawback of these types of 
initializations is that they require a lot of computational effort. 

Comparing results with all these initialization techniques is a Herculean task, and 
since simple random selection (or “Forgy Approach”) is the most common and 
simple, we will use it in the comparisons with SOM. 

3   Self-organizing Maps and Their Use in Obtaining K-Clusters 

Although the term “Self-Organizing Map” could be applied to a number of different 
approaches, we shall use it as a synonym of Kohonen’s Self Organizing Map 
(Kohonen 1982;Kohonen 2001), or SOM for short, also known as Kohonen Neural 
Networks.  

The basic idea of a SOM is to map the data patterns onto a n-dimensional grid of 
neurons or units. That grid forms what is known as the output space, as opposed to the 
input space where the data patterns are. This mapping tries to preserve topological 
relations, i.e., patterns that are close in the input space will be mapped to units that are 
close in the output space, and vice-versa. So as to allow an easy visualization, the 
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output space is usually 1 or 2 dimensional. The basic SOM training algorithm can be 
described as follows: 

Let X be the set of n training patterns x1, x2,..xn  
  W be a p×q grid of units wij where i and j are their 
   coordinates on that grid 
  α be the learning rate, assuming values in ]0,1[, initialized 
   to a given initial learning rate 
  r be the radius of the neighborhood function h(wij,wmn,r),  
   initialized to a given initial radius 
1 Repeat 
2  For k=1 to n 
3   For all wij∈W, calculate dij = || xk - wij || 
4   Select the unit that minimizes dij as the winner wwinner 
5   Upadate each unit wij∈W: wij = wij + α h(wwinner,wij,r) || xk – wij || 
6  Decrease the value of α and r 
7 Until α reaches 0 

 
The neighborhood function h is usually a function that decreases with the distance 

(in the output space) to the winning unit, and is responsible for the interactions 
between different units. During training, the radius of this function will usually 
decrease, so that each unit will become more isolated from the effects of its 
neighbors. It is important to note that many implementations of SOM decrease this 
radius to 1, meaning that even in the final stages of training each unit will have an 
effect on its nearest neighbors, while other implementations allow this parameter to 
decrease to zero. 

SOMs can be used in many different ways, even within clustering tasks (Bação, 
Lobo et al. 2005). In this paper we will assume that each SOM unit is a cluster center, 
and thus a k-unit SOM will perform a task similar to k-means. It must be noted that 
SOM and k-means algorithms are rigorously identical when the radius of the 
neighborhood function in the SOM equals zero (Bodt, Verleysen et al. 1997). In this 
case the update only occurs in the winning unit just as happens in k-means (step 4). 

4   Experimental Setting 

4.1   Datasets Used  

The data used in the tests is composed of 4 basic datasets, two synthetic and two real-
world. The real-world datasets used are the well known iris dataset (Fisher 1936) and 
sonar dataset (Sejnowski and Gorman 1988). The iris dataset has 150 observations 
with 4 attributes and 3 classes, while the sonar dataset has 208 observations with 60 
attributes and 2 classes. Two synthetic datasets were created. The first dataset, DS1, 
comprises 400 observations in two-dimensions with 4 clusters. Each of these clusters 
has 100 observations with a Gaussian distribution around a fixed center. The variance 
of these Gaussians was gradually increased during our experiments. The second data 
set, DS2, consists of 750 observations with 5 clusters with Gaussian distributions 
defined in a 16 dimensional space.  
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4.2   Robustness Assessment Measures 

In order to access the performance of the two methods a set of three measurements 
was used. The first one is the quadratic error i.e., the sum of the squared distances of 
each point to the centroid of its cluster. This error is divided by the total dispersion of 
each cluster so as to obtain a relative measure. This measure is particularly relevant as 
it is the objective function of the k-means algorithm. Additionally, the standard 
deviation of the mean quantization error is calculated in order to evaluate the stability 
of the results found in the different trials. The second measure used to evaluate the 
clustering is the mean classification error. This measure is only valid in the case of 
classification problems and is the number of observations attributed to a cluster where 
they do not belong. Finally, a structural measurement is used in order to understand if 
the structural coherence of the groups is preserved by the clustering method. This 
measure is obtained by attributing to each cluster center a label based on the labels of 
the observations which belong to its Voronoi polygon. If more than one centroid 
receives a given label (and thus at least one of the labels is not attributed) then the 
partition is considered to be structurally damaged. 

5   Results 

Each dataset was processed 100 times by each algorithm, and the results presented in 
table 1 constitute counts or means. Table 1 presents a summary of the most relevant 
results. A general analysis of table 1 shows a tendency for SOM to outperform k-
means. The mean quadratic error over all the datasets used is always smaller in the 
case of the SOM, although in some cases the difference is not sufficiently large to 
allow conclusions. The standard deviation of the quadratic error is quite enlightening 
showing smaller variations in the performance of the SOM algorithms. The class error 
indicator reveals a behavior similar to the mean quadratic error. Finally, the structural 
error is quite explicit making the case that SOM robustness is superior to k-means. 

Looking closer at the results in different datasets, there is only one data set in 
which k-means is not affected by structural errors. The reason for this is related with 
the configuration of the solution space. In the sonar dataset the starting positions of 
the k-means algorithm are less relevant than in the other 3 datasets. 

Table 1. – Comparison of SOM and k-means on different datasets, using the average quadratic 
error. its standard deviation, average classification error, and average structural error, over 100 
independent initializations  

Dataset Method Quadratic error Std(Qerr) ClassErr Struct Err 
SOM 86.67 0.33 9.22 0 

IRIS 
k-means 91.35 25.76 15.23 18 

SOM 280.80 0.10 45.12 0 
SONAR 

k-means 280.98 3.18 45.34 0 
SOM 9651.46 470.36 1.01 0 

DS1 
k-means 11341.49 2320.27 12.77 58 

SOM 27116.40 21.60 7.40 0 
DS2 

k-means 27807.97 763.22 15.51 49 
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The real-world dataset refers to enumeration districts (ED) of the Lisbon 
Metropolitan Area and includes 3968 ED’s which are characterized based on 65 
variables, from the Portuguese census of 2001. Exploratory analysis of this dataset 
using large size SOMs and U-Matrices suggests that we should consider 6 clusters 
within this dataset. To find the exact locations and members of these 6 clusters we 
applied a batch k-means algorithm to this data, and compared the results with those 
obtained with a 6x1 SOM. In both cases we repeated the experiment 100 times with 
random initializations. The quadratic error obtained with k-means was 3543 ± 23 with 
a minimum of 3528, whereas with SOM we obtained 3533 ± 6 with a minimum of 
3529. These results show that the best clustering obtained with each method is 
practically the same, but on average SOM outperforms k-means and has far less 
variation in it’s results. 

6   Conclusions 

The first and most important conclusion that can be drawn from this study is that 
SOM is less prone to local optima than k-means. During our tests it is quite evident 
that the search space is better explored by SOM. This is due to the effect of the 
neighborhood parameter which forces units to move according to each other in the 
early stages of the process. This characteristic can be seen as an “annealing schedule” 
which provides an early exploration of the search space (Bodt, Cottrell et al. 1999). 
On the other hand, k-means gradient orientation forces a premature convergence 
which, depending on the initialization, may frequently yield local optimum solutions. 

It is important to note that there are certain conditions that must be observed in 
order to render robust performances from SOM. First it is important to start the 
process using a high learning rate and neighborhood radius, and progressively reduce 
both parameters to zero. SOM’s dimensionality is also an issue, as our tests indicate 
that 1-dimensional SOM will outperform 2-dimensional matrices. This can be 
explained by the fact that the “tension” exerted in each unit by the neighboring units 
is much higher in the case of the matrix configuration. This tension limits the 
plasticity of the SOM to adapt to the particular distribution of the dataset. Clearly, 
when using a small number of units it is easier to adapt a line than a matrix.  

These results support Openshaw’s claim which points to the superiority of SOM 
when dealing with problems having multiple optima. Basically, SOM offers the 
opportunity for an early exploration of the search space, and as the process continues 
it gradually narrows the search. By the end of the search process (providing the 
neighborhood radius decreases to zero) the SOM is exactly the same as k-means, 
which allows for a minimization of the distances between the observations and the 
cluster centers. 
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