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Abstract – A method for planning routes for patrol vessels 

is proposed. This method is based on a Self-Organizing Map 
(SOM) solution for the Travelling Salesman Problem (TSP), 
although with significant changes. The locations of reported 
Search and Rescue (SAR) requests, together with the 
locations of reported occurances of illigal fishing activities are 
used as guidelines for designing the path vessel should take. 
However, instead of forcing the patrol routes to pass exactly 
in those locations, as would happen in a TSP, the proposed 
method uses the locations as density estimators for where the 
patrol effort should be placed. It then obtaines a patrol route 
that passes through the areas with greater density. We show 
the behaviour of the proposed method on artificial data, and 
then apply the method to some data from the Portuguese 
Navy, obtaining possible routes for its patrol vessels. 
 

I. INTRODUCTION 
 

A large number of tasks performed by the Portuguese navy 
are related with non-military missions, such as enforcing the 
protection of the Portuguese Exclusive Economic zone from 
illegal fishing activities, monitoring environmental risks, and 
search and rescue missions (SAR). The definition of the best 
patrol route is an interesting problem in the planning stage of 
these missions. Presently, this is largely based on the previous 
empirical experience of the officer in charge and there are no 
guidelines or objective criteria to support route design. Here we 
seek to establish a simple strategy which enables a more 
consistent planning of these missions, establishing an objective 
criteria and using a neural network (in this case, a 1-Dimensional 
Self-Organizing Map [1]) as the optimization tool. 

We assume that the best route for a non-military mission is 
the route that maximizes the probability of “being useful”, i.e., of 
finding some kind of illegal activity and being close to some kind 
of emergency. We also assume that the locations of reported 
occurrences are good predictors of where incidents will occur in 
the future. Thus, the best route should be one that “roughly” goes 
through all the points where occurrences were reported recently. 
Using this criterion the problem becomes similar to the well 
known Traveling Salesman Problem (TSP) [2]. 

We start by pointing out the similarities and differences 
between our problem and the TSP. Next we give a short 
presentation of the SOM, it’s application to the design of patrol 
routes, and highlight some relevant characteristics of this method. 
In section IV we present some experiments using artificial data, 
and try assess the impact of certain parametrizations. In section V 
we use the proposed algorithm to obtain patrol vessel routes using 
data from the Portuguese Navy. Finaly, we conclude with some 
remarks on the relevance of the proposed method, its major 
shortcommings, and propose future developments and 
improvements. 

 
II. SIMILARITIES AND DIFFERENCES WITH THE TSP 
 
The TSP is a well known problem that has been thoroughly 

studied in operations research (OR). The basic formulation can be 
described as follows: if a salesperson has to visit n cities, and if 
he desires to minimize the distance, which is the best path? 
Although the TSP is easily stated it has been a difficult challenge. 
The only way to find the optimal solution consists on calculating 
(at least implicitly) all the possible paths. The number of possible 
paths for n cities is given by n!. If the number of cities is small (5 
or 10) it is perfectly feasible to search all possible paths. However, 
if the number of cities increases (for example to 500) then it 
becomes impossible to search all possible solutions to the 
problem.  

The TSP belongs to the class of NP-hard problems [2], as was 
proved in [3]. The fundamental consequence of this is that at 
present the best way to solve this problem is to use heuristic 
methods. Although these methods do not guarantee optimal 
results they usually produce good solutions in adequate time. An 
overview of the available heuristics to solve the TSP can be 
found in [4]. 

The original TSP formulation requires that the algorithm 
must find a solution which passes rigorously through all the 
designated cities. In the case of our problem, we may relax this 
requirement, and only demand that the trajectory pass roughly 
near the occurrences points. This relaxed problem was recently 
addressed in [5] using algorithms which required a specific 
neighborhood radius to be met. We propose the use of a standard 
Self-Organizing Map [1, 6] as a simpler and more flexible 
approach to the problem.  

The Self-Organizing Map (SOM) can be adapted to the TSP 
through the use of 1-dimensional maps. In this case the network 
is trained using the locations (x and y coordinates) that need to be 
visited. At the end of the training phase, the line representing the 
SOM will be laid out in such a way that it will pass in the areas 
where the density of data points is higher. Using the SOM to 
solve the TSP is not new [7-10], nevertheless all previous 
approaches are focused on the original TSP formulation.  

Unlike in the TSP, when designing patrol routes the relative 
density of the points of previously reported occurrences is much 
more relevant than the actual position of each of the reported 
occurrences. Given the preemptive nature of these missions the 
objective is to use the historical data to loosely orientate the path, 
allowing for an optimal positioning of the vessel with regard to 
the areas where the probability of new occurrences is high. The 
fundamental idea is that areas of high density of reported 
occurrences constitute a good predictor of future occurrences.  

In this paper we use the 1-dimensional SOM as an estimator 
of curves of maximum probability. In this procedure we 
substitute the original points, given by the reported occurrences, 



 

 

by a much smaller number of ordered SOM units. This way the 
SOM has to optimize the distribution of its units in order to 
represent a more complex reality (all the reported occurrences). 
In this sense this constitutes a data reduction and ordering 
problem where we seek to maintain the fundamental aspects of 
the original distribution, although drastically reducing the 
representational resources. The SOM units constitute the 
representational resources and all of them are connected to 
neighboring units. This means that the position of each unit 
influences the position of neighboring units. It is this particular 
feature that allows the use of the SOM in the definition of curves 
of maximum probability.  

 
III. 1-DIMENSIONAL SOMS AND THEIR BEHAVIOR 
 
Self-Organizing Maps [1, 6], or SOM for short, also known 

as Kohonen Neural Networks are primarily visualization and 
analysis tools for high dimensional data, but they have been used 
in many different tasks, such as clustering, dimensionality 
reduction, classification, sampling, vector quantization, and 
data-mining [1, 11]. The basic idea of a SOM is to map data 
patterns onto an n-dimensional grid of units (also known as 
neurons). That grid forms the output space, as opposed to the 
input space where the data patterns are. This mapping tries to 
preserve topological relations, i.e., patterns that are close in the 
input space will be mapped to units that are close in the output 
space, and vice-versa. So as to allow an easy visualization, the 
output space is usually 1 or 2-dimensional.  

Before training, the units are normally initialized randomly. 
Usually the training consists on two parts. During the first part of 
training, the units are “spread out”, and pulled towards the 
general area (in the input space) where they will stay. This is 
called the unfolding phase of training. After this phase, the 
general shape of the network in the input space is defined, and we 
can then proceed to the fine tuning phase, where we will match 
the units as closely as possible to the input patterns, thus 
decreasing the “quantization error”. The quantization error is the 
sum of the differences between each input pattern and its neares 
unit, and can be seen as a measure of how weel the units 
represent the input patterns. The basic SOM training algorithm 
can be described as follows: 

 
Let X be the set of I training patterns x1, x2,..xn  
  W be a p×q grid of units wij where i and j are their 
   coordinates on that grid 
  α be the learning rate, with values in ]0,1[, initialized 
   to a given initial learning rate 

r be the radius of the neighborhood function 
h(wij,wmn,r), initialized to a given initial radius 

 
1  Repeat 
2  For k=1 to n 
3   For all wij∈W, calculate dij = || xk - wij || 
4    Select the unit that minimizes dij as the winner wwinner 
5    Upadate each wij∈W: wij = wij + α× h(wij,wmn,r)×|| xk - wij || 
6   Decrease the value of α and r 
7  Until α reaches 0 
 

The neighborhood function h is usually a function that 

decreases with the distance (in the output space) to the winning 
unit, and is responsible for the interactions between different 
units. During training, the radius of this function will usually 
decrease, so that each unit will become more isolated from the 
effects of its neighbors. The learning rate α must converge to 0 so 
as to guarantee convergence and stability for the SOM [1]. 

For our purpose the best approach is to use 1-dimensional 
SOMs instead of the more usual 2-dimensional SOMs. In the 
context of designing patrol routes the 1-dimensional SOM is 
particularly suited, as happens in the TSP. In both cases we 
attempt to map a 2-dimensional space into a 1-dimensional space 
(a line), i.e. a sequence of points where the patrol vessel should 
pass. Mappings of 1-dimensional input spaces to 1-dimensional 
SOMs have been extensively studied and some important 
properties identified by [12]. For our application one such 
property is of particular relevance: the SOM produces a bias in 
the representation of the input space. In fact, the distribution of 
the classification resources (units) will be more than proportional 
in lower density areas. This effect is usually referred to as 
“magnification effect” [12, 13]. The quantification of this effect 
in more general mappings has proved to be elusive and is still an 
unresolved issue. Nevertheless in our application we expect to 
observe the “magnification effect”, which implies that even areas 
with a low density of reported occurances will tend to be visited. 

Two issues need to be considered in the application of 
1-dimensional SOMs to the optimization of patrol routes. The 
first regards the number of units to use, and how changes in the 
number of units affects the path calculation. The second issue 
concerns the fine-tuning of the neighborhood parameter used in 
the SOM training. Different neighborhood radius will yield paths 
with different properties. These two issues are tested in the 
following section. 

 
IV. EXPERIMENTS WITH ARTIFICIAL DATA 

 
To test the effect of different parameters on the route 

obtained, we generated two artificial datasets. In our experiments 
we produced SOMs with different numbers of units (10, 20, 50 
and 100), and with different final radius for the neighborhood 
function (0, 1, and 2). In all experiments we used only one 
training phase with 100 epochs, a learning rate of 0.5 and square 
(or bubble) neighborhoods with an initial radius of 80% of the 
map size. These experiments used the SOMToolbox for Matlab 
implementation of SOM [14]. 

The first dataset consists of 500 points with a uniform 
distribution in a unit square, and the results are presented in Fig. 1. 
Two aspects of the algorithm stand out from this figure. On one 
hand, as the number of units increases, the route covers the input 
with more accuracy, winding over itself. This is an expected 
result as it only reflects the fact that having more representational 
resources the SOM will more accurately depict the density of the 
data points. On the other hand, as the final neighborhood 
increases, the path obtained will provide less detail on the 
distribution of the data points. To a certain extent it can be argued 
that when the final neighborhood reaches 0 both the unfolding 
and the fine tuning phase are present in the training. On the 
contrary, if the final neighborhood remains relatively large only 
the unfolding phase is present. 



 

 

Fig. 1. 1-dimensional SOMs trained with uniform data. The black dots 
represent the actual location of the units. 

 

Fig. 2. 1-dimensional SOMs trained with non-uniform data. The black 
dots represent the actual location of the units. 

 
The second dataset consists of 300 points with a uniform 

distribution in ([0 1],[0 0.3]), which roughly corresponds to the 
lower third of the unit square. To these points we added 30 more 
with a much lower but also uniform density in ([0.5 0.6],[0.6 
0.7]) corresponding to a small square approximately centered in 
the upper half of the unit square. The results are shown in Fig. 2, 
and confirm the comments made above about the influence of the 
number of units and the size of the final neighborhood. In this 
particular case the presence of a small but noticeable lump of 
points above the main distribution allows us to confirm that, 
when using a similar number of units, low values for the final 
neighborhood will improve the representation of these outliers. 

 
 

V. THE PORTUGUESE CASE 
 
Additional tests were performed using the SOM on real world 

data, representing reported occurrences near the Portuguese coast 
line. The data used in this study was kindly provided by the 
Portuguese Navy. Due to confidentiality and national security 
issues the data provided constitutes only a sample of the 
occurrences. The sample comprises 93 SAR occurrences during 
2003. The database file was composed of cartesian (x,y) 
geographic coordinates, derived from the actual latitude and 
longitude of reported occurances. The units of these coordinates 
are irrelevant for the purposes of this paper. We ran experiments 
with a large number of SOM units (twice as many as data 
patterns), which lead to long and “winding” routes. We also ran 
experiments with fewer SOM units (93, 46, and 23 units), which 
lead to ever shorter and “straighter” routes. In each case, we ran 
50 independent tests, which due to the non-deterministic nature of 
SOM lead to slightly different results. Examples of the routes 
obtained are presented in Fig.3, and the numerical results are 
presented in Table 1. The average lengths obtained when using a 
large number of units are generally higher than the ones obtained 
with few units. It must be noted that although the average length 
obtained with 46 units is smaller than the one obtained with 23, 
the standard deviation is greater than the difference and thus this 
difference has no statistical significance. The same happens with 
the average lengths using 93 and 186 units. As was clear from the 
previous tests on artificial data, as the number of neurons 
decreases the path tends to disregard “outlier” occurrences 
concentrating on high density areas. 

 

  

  
Fig. 3. Routes obtained with SAR data. In the top left route we use twice 

as many SOM units (186) as available data points (93), in the top right we 
use 93 units, in the bottom left 46, and only 23 in the bottom right. 



 

 

 
Table 1. Average distances (and standard deviations) obtained over 50 

trials, using closed paths 

Nº SOM units Average length Standard Deviation 

186 24.4130 2.5135 

93 24.5072 2.6288 

46 18.5052 1.2594 

23 19.7034 2.3954 

 
 

VI. CONCLUSIONS AND FUTURE WORK 
 

Based on our experiments we conclude that the SOM can be 
used as a flexible and quick way to obtain optimized paths for 
patrol vessels in non-military missions. The processing time 
needed for the calculations is rather small (around 8 seconds) 
which allows real time redefinition of the path as new 
information is acquired. The use of locations of previously 
reported occurrences gives the opportunity to design a path which 
constitutes the informed “best guess” on where the presence of 
the patrol vessel is bound to discourage illegal activities and be 
available to rapidly attend to SAR missions. We do not, at present, 
show any comparisons with other methods, since no other 
systematic methods are used to perform this task. 

Although the concept of using SOMs for this task was shown 
to be viable, additional work must be done to obtain good results. 
There are three main aspects that must be improved: forcing 
initial/final home ports, taking into account natural barriers, and 
using SOM unit density to define speed. 

If we whish to specify initial and final ports for the itineraries, 
we may force one or two of the SOM units to have fixed 
coordinates, depending on whether the initial and final port are 
the same or not. This is very easy to do, and we did run some 
tests using this approach. We also conducted a series of 
experiments using “open end” routes, i.e., routes that consitute 
open paths with no constains on initial and final locations. So as 
to make the results comparable we did not include them in this 
paper. 

Some of the routes obtained in our tests cross land. This is 
obviously not possible for a patrol vessel (though it may still be 
useful for maritime patrol aircraft). One simple way of dealing 
with the problem is to sail between the two points where the route 
crosses the shore by the shortest sea route. This approach, while 
simple, does imply that we are not using the best (shortest 
possible) route. The correct solution to this problem would be to 
use true sea distances between points in the workings of the SOM 
algorithm. This may be achieved by calculating those distances 
using a Geographic Information System (GIS), which would also 
solve the problem of using Cartesian instead of geographic 
coordinates. Once again this would not affect the fundamental 
principals of our approach, but would require a lot of re-coding. 

Finally, the density of SOM units is an indication of the 
density of reported occurrences. Thus, areas where the density of 
SOM units is greater should be patrolled more carefully. The 
proximity of consecutive SOM units can be used to define the 
speed which should be used during the patrol. However, in many 
cases, it is better and more economical to use a constant speed. In 
this case, equally spaced target-times may be given to each unit, 
giving the vessel’s captain the liberty to zig-zag or circle the 
locations of the units until those target-times are met. 
Additionally, there is the possibility of pruning the proposed path. 

Increasing distance between units indicates a decrease in point 
density, this way the longest edges of the SOM are primary 
candidates for pruning. 

There is a wide range of applications for this tool. It can be 
used to direct unmaned areal vehicles, allowing real time path 
definition based on continue information feeding. It can also be 
used in police and military patrolling activities, where the 
objective is to control areas where the probability of certain 
events is higher than a certain threshold.  

.  
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