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It is frequently argued that spatial data has a number of characteristics which sets 
it apart from other types of data.  In this paper we argue that this was the case 
when data analysis was essentially based on what is now called primary data.  
This is no longer true because in recent years a new type of data, called 
secondary data, has gained increasing relevance.  This data has basically the same 
problems that have plagued spatial data.  With the increase in the amount of 
available operational data due to the widespread use of computing devices and 
sensors, secondary data has emerged and gained importance.  Secondary data is 
extensively used in data mining, and in fact it constitutes its “raison-de-être”.  In 
this paper we analyze the main characteristics of spatial data and draw a parallel 
with the major features of secondary data.  Underlying our argument is the idea 
that the special nature of spatial data has lost relevance, as now it constitutes 
only one particular case of secondary data, which is widely used in many different 
areas.  One consequence of this argument is that the GIScientist toolbox can be 
vastly increased by importing tools which have proved well in handling secondary 
data.  This doesn’t mean that these tools should not be adapted to the specific 
needs and perspective of GIScience analysis.  Some variables, such as location, 
and principles, such as the First Law of Geography, play central roles within 
GIScience and researchers should focus on finding ways to introduce these 
concepts in the workings of data mining tools.  This will potentially lead to a more 
powerful yet GIScience relevant analysis toolbox. 
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INTRODUCTION 

Much of the success of quantitative analysis in human and social sciences has been dependent on 
their ability to make use of tools provided by traditional statistical theory.  The development of 
theories and models which can be translated into functional forms supporting inference objectives, 
much like in physics, has constituted an objective for many researchers in human and social 
sciences.  These researchers tend not to accept the argument that human phenomena are eminently 
unpredictable.  Basically, they reject the idea that human phenomena are much more complex than 
physical ones and that human behavior incorporates a level of complexity beyond the simplified 
models that science is capable of formulating.   

In the particular context of GIScience the adoption of traditional statistical techniques has been 
troublesome.  Problems arise from the fact that much of the statistical theory available was based 
on assumptions that were too strict for spatial data.  In fact, spatial data has, from the traditional 
statistic theory perspective, particular characteristics which, among other consequences, have 
caused difficulties in developing a coherent and sturdy approach to spatial analysis based on 
traditional statistical techniques [1] [2].    

Although in many other scientific fields and circumstances the strict statistical assumptions did not 
always hold, the deviations were rather small and the general attitude was to overlook these 
problems.  In GIScience this was not the case.   Many reasons have contributes to this fact, but 
probably the most relevant was the obvious contradiction between the assumptions underlying 



traditional statistical models and the nature of spatial data.    

It has been said that spatial data have special characteristics [3] [4] [5] which makes it a unique 
challenge to researchers, and for this warranting special tools.  In the next section we will address in 
detail the special characteristics of spatial data.  We will argue that the “uniqueness” usually 
associated with the word special, when used to describe spatial data, is no longer true.  The 
adjective “special” has been used mainly in order to convey the idea that traditional statistical 
techniques are inadequate to deal with spatial data, because of the unique characteristics of spatial 
data.  The consequence derived from the traditional idea that it is special is that GIScience needs 
specific tools, a completely new and different toolbox, in order to cope with the problems posed by 
spatial data.  From our perspective this is no longer true.    

Decades ago, when most data was collected for specific analysis purposes and data was scarce, the 
argument that spatial data was special, as explained in [3] [6], was appropriate.  In those days, a lot 
of the statistical research efforts were focused on reaching conclusions based on minimal datasets.  
The fundamental idea was to define the conditions that would help us collecting the smallest 
amount of data and still be able to generalize the analysis results achieved based on that small 
sample.  Today data availability and access is completely different. 

When referring to the need to develop new analysis tools authors should be clear about the cause 
that underlines this need.  It can be argued that new tools are needed because spatial data is 
special.  On the other hand it can be argued that the need for new tools comes from the particular 
perspective of the GIScience analysis, and not from the constraints posed by data itself.  Finally, one 
can also make use of both arguments, such as [6] ”It is very dangerous to overlook the features of 
geographical data that make it special.  Geographical Data Mining (GDM) is to be regarded as a 
special type of data mining that seeks to perform similar generic functions as conventional data 
mining tools, but modified to take into account the special features of geoinformation, the rather 
different styles and needs of analysis and modelling relevant to the world of GIS, and the peculiar 
nature of geographical explanation.  The focus here is on developing an explicitly Geographical Data 
Mining technology.” 

In this paper we argue that new analysis tools are, in fact, needed but not because spatial data is 
special, this argument is no longer convincing.  Spatial data has the same characteristics as most of 
the data used within data mining context, in many different research areas.  If new tools are needed 
is because of the particular perspective of GIScience.  Data mining techniques, more specifically 
machine learning (ML) tools, being essentially assumption free, can be safely used within the 
GIScience analysis context (for a review on the use of ML tools within GIScience see [2]).  The 
problem of using standard ML techniques in GIScience analysis is not related with imposing 
unrealistic assumptions on data, but on accommodating the particular interests and analysis 
perspective of the GIScientist.  To sum up we would say that there is nothing special in geographic 
data, assumption wise, what is truly special is GIScience analysis.  What are needed are new tools to 
implement the particular perspective of GISicentists, not new tools to deal with geographic data. 

In the following section we review the most relevant characteristics of spatial data.  Next we will 
deal with the differences between primary and secondary data, trying to expose some of the 
similarities between the problems of secondary and spatial data.  We finalize with some comments 
and conclusions on the consequences of the similarities found and point some possible research 
directions. 

CHARACTERISTICS OF SPATIAL DATA 

In the last decades GIScience have developed an in-depth understanding of some of the major 
features that characterize spatial data.  The motivation for this is largely linked with the increasing 
use of computation in different sciences and also with the challenges prompted by the use of 
computers to represent geographic phenomena.  Geographic Information Systems (GIS) forced 
researchers to look again at the nature and characteristics of spatial data.   



Conceptual models allowing digital representation of spatial data emerged and provided an 
unparalleled environment for geographic research. GIS lead to a renewed enthusiasm about space 
and the role of location in many human, social and environmental problems.  The fast paced 
developments also lead to an early understanding of the some major limitations and problems of GIS 
[7] [8].  There are two types of problems that are of particular interest for our purpose: problems 
related with the representation of spatial data, and problems related with the lack of tools to 
extract knowledge from GIS.    

The most well-known characteristic of spatial data derives from the 1st law of geography [9], which 
states that “everything is related to everything else but near things are more related than distant 
things”.  The most consensual consequence of the 1st law of geography is that spatial data is 
characterized by the existence of spatial dependency.  This means that values for a particular 
variable in a specific location are related with the values of that same variable in neighboring 
locations.    

Let’s assume that every phenomenon is defined by a process and expressed in a context.  The 
process represents the factors underlying the phenomena and context represents the frame in which 
the phenomena are observed (e.g. space and time).  Spatial dependency indicates that the context 
has an important impact in the process, in other words, the phenomenon in a particular location is a 
function of the underlying factors but also of the intensity of that same phenomenon in neighboring 
locations.  This adds complexity to the analysis, for it would be much simpler to concentrate our 
attention on the underlying factors and assume a neutral context.   

Traditional statistical theory usually assumes that observations are independent and that they follow 
identical distributions (i.i.d.).  This is clearly an unacceptable assumption in the context of spatial 
data analysis, because of spatial dependency.  Additionally, assumptions on the distribution of 
residuals are also affected by spatial dependency.  Directly related with spatial dependency is the 
notion of spatial autocorrelation.  In fact, spatial autocorrelation [10] can be seen as the 
computational expression of the concept of spatial dependency.  The underlying idea was to develop 
an indicator which enabled the researcher to know the degree to which spatial autocorrelation is 
present in the data.  There are different indicators of spatial autocorrelation, which can be grouped 
into two major sets: global measures [10] and local measures [11] [12].  While global methods 
estimate one parameter or index for the entire study region, local methods can provide as many 
parameters or indices as data points.    

There is a second important characteristic of spatial data which is usually called heterogeneity.   
Heterogeneity results from the unique nature of each place, indicating that spatial data very rarely 
presents stationary characteristics [3].  Spatial heterogeneity is related with the lack of stability on 
the behavior of relationships over space.  This characteristic is also known as nonstationarity.  This 
means that the functional forms and parameters may vary (usually do) and are not homogeneous in 
different areas of the map.  Closely related is the notion of isotropy which assumes that the pattern 
is similar in all directions.  Clearly, a realistic perspective on most spatial data has to assume that in 
general most spatial processes are nonstationary and anisotropic.    

Heterogeneity and nonstationarity create additional problems in analysis, emphasizing the local 
nature of space/process interaction.  This notion implies that global models and global map statistics 
constitute poor analysis tools, which in most cases average out highly complex interactions between 
space and process.  This has fueled interest in different forms of “place-based” analysis “which 
allow results to vary spatially, rather than searching for a single universal result” [13].  Another 
consequence is that errors and uncertainty in spatial data will tend to be spatially clustered.  This 
means that certain areas of the map will present higher levels of error and uncertainty.    

The term leverage is commonly used for an undesirable effect which is experienced in regression 
analysis and in other methods.  It basically means that a single data point which is located well 
outside the bulk of the data (outlier) has an over-proportional effect on the resulting regression 



curve.  In the context of spatial data, leverage effects should be expected as particular areas are 
bound to present levels of error significantly higher than the overall dataset.  This stresses the need 
to adopt what can be called error tolerant or noise robust approaches that graciously degrade in 
presence of outliers.  This is surely not the case of least squares strategies or k-means approaches.    

Geographic space is continuous and infinite (or at least compact).  The discrepancies between the 
real world and the representations of the real world used as the basis of analysis can also affect the 
quality of the analysis.  The need to achieve a discrete representation of geographic space creates 
(small) errors.   Sometimes these errors endanger the quality of the analysis.  The need to define 
crisp boundaries between spatial objects leads to data which apparently provides a rigorous and 
adequate representation of reality, but, in reality, may lead to serious limitations as far as accuracy 
and representativity are concerned.  Spatial data is in its nature eminently fuzzy and this 
characteristic goes beyond representational models and issues.  It is fuzzy also in terms of 
interactions between different spatial objects and in the way these interactions subsist in time.   

A significant amount of geographical data is produced by sampling.  The sampling procedures are not 
always the result of scientifically consistent processes but rather of operational limitations 
(convenience or opportunity samples) that tend to be superimposed on concerns about methodology.  
This results in what is usually referred to as selection bias and which leads to an uneven coverage 
and potentially to miss relevant space/process information.  Additionally, the conjugated effects of 
spatial dependency and heterogeneity may well overthrow any attempts to produce a rigorous sketch 
of a particular geographic area.  If we consider the dynamic nature of a lot of phenomena of interest 
in GIScience then the picture gets even darker.   

Other times, as in the case of satellite images, data is collected in an extensive way.  In these cases 
datasets are large in both size and dimensionality, although presenting a high degree of redundancy.  
Additionally, these datasets do not always have the appropriate resolution for the phenomena that 
they are meant to represent.  Accordingly, its representativity may be compromised and thus taint 
later analyses.   

Finally, spatially aggregated data, which is commonly used in socio-economic analysis, also has its 
fair share of problems.  Largely resulting from statistical surveys such as census operations these 
data are distributed in aggregated form to comply with privacy issues and regulations.  The 
aggregation encloses two major problems: the modifiable nature of the resulting areas [14] and the 
ecological fallacy [15]. 

PRIMARY AND SECONDARY DATASETS 

We argue that spatial analysis is largely concerned with what is known as secondary data analysis as 
opposed to primary data analysis [16].  By primary data we refer to data that are collected with a 
particular analysis objective in mind.  On the other hand the concept of secondary data is related 
with data that were collected with some other purpose but can also be used to perform analysis.   

Typically, primary data results from a specific inference question.  In this way the datasets are 
collected with this specific objective in mind and according to well established methodological 
directives, in accordance with the specific needs of the inference task.  Secondary data results from 
different types of digital processing and operational systems, which, in the majority of the cases, are 
not concerned with inference.    

While inferring from small and “clean” datasets is central in many research activities, new 
challenges emerged with the fast digitalization of our world.  Every day the digital representation of 
the real world grows at an ever increasing rate.  This representation is limited and certainly much 
less rich than the human experience.  Nevertheless this “digital portrait” is becoming so large and 
detailed that it has the potential to enclose the answer to many questions and problems of our 
society [8].  It presents an opportunity to look back at the near past and “learn”.    



The down side to this immense potential is in the nature of the data.  Contrary to the data usually 
used in statistics these datasets are very large and “dirty”.  The sheer size of these datasets 
constitutes the first problem.  Not only are they large in terms of records (n) but also in terms of 
variables (p).  These two aspects impose significant and complex computational problems which 
simply were not an issue a few decades ago.  Even today, and regardless of foreseeable 
improvements in computing power, some problems remain intractable.  On one hand, we have the 
“curse of dimensionality” [17] that states that as the dimensionality (p) of the problems grows, the 
search space grows so fast that no matter how much data we have, that search space will be very 
sparse.  On the other hand most data processing algorithms have memory and time processing 
requirements that grow more than proportionally with the number of instances (n), and thus 
traditional data processing algorithms can not be scaled up to process these large datasets.   

Another relevant issue concerning the increase in dimensionality (p) concerns the potential for 
“spurious correlations”.  In statistics the term “spurious correlation” is used when variables exhibit 
relation although missing causality.  An example would be a correlation between mortality of 
hospital patients and data taken during the admission of the patients.  One might conclude that 
taking fever measurements decreases the probability of death in the next 48 hours.  Clearly, this 
correlation lacks causality, but it can be explained by the fact that most patients that are admitted 
through the emergency service, which due to their clinical situation have a higher risk of dying, are 
usually not monitored for fever.  In secondary datasets this problem is very common and sometimes 
it occurs simply due to random numeric effects, which are bound to happen whenever the number of 
variables (p) is very large.  

The problems faced when dealing with high dimensional datasets emphasize the need for 
appropriate pre-processing strategies and the dangers associated with purely inductive approaches.  
The idea of “letting data speak for themselves” is appealing but not completely safe.  If we 
approach the modeling task based solely on “brute force” heuristic search, surrendering any domain 
knowledge, the results might well be disastrous.  Further complications come from the meaningless 
of significance testing in datasets that contain millions of records [16].  In [2] the author addresses 
this problem, and rightly questions the relevance of significance testing in the context of approaches 
such as the Geographical Analysis Machine [18].   

Particularly ironic is the fact that secondary datasets albeit deep, dimension wise, sometimes lack 
key variables for many modeling tasks.  Often the challenge, when exploring or modeling these 
datasets, is to do the best with the available data, and confirm if the best is good enough for the 
task at hand.  In many circumstances it is necessary to find proxies to replace unavailable but crucial 
variables.  It is quite common to use ratios, indexes and pre-processed variables, with the objective 
of improving the information potential of the input patterns.  Even so, the absence of key variables 
will usually introduce some fuzziness in the description of a given phenomenon. 

There are numerous reasons to label secondary data as dirty.  Most of these datasets comprise 
missing information.  Data about certain variables is available for some records but not for others.  
This causes difficulties in the analysis but it can even get worse, such as the case when these missing 
values indicate systematic distortions.  In [19] the author provides an example of such systematic 
distortion referring to road accidents recording, where more serious accidents, involving fatalities, 
are recorded with a greater accuracy than less serious ones.   

Dependent observations are quite common in secondary data, where observations can exhibit 
multiple functional dependencies.  In fact, association rules [20] constitutes a methodology which is 
essentially concerned with the detection of such “natural” dependencies.  Supermarket transactions 
records constitute an example of datasets plagued with such dependency effects.  Some of these 
dependency effects are “natural” (someone that buys paint has a greater probability of buying 
brushes) other are “induced” as they represent the effect of certain commercial initiatives (e.g.  
bundle of products, cross-selling strategies and promotions).   



As [2] points out ML tools, usually, do not rely on assumptions of independence, as each variable is 
used to the extent to which it helps predicting the desired outcome.  In this context, components of 
the input pattern which are highly correlated are of limited interest as the information contained in 
them is redundant.  Typically, ML tools will use one of the components (the most informative one) 
and ignore all others with which it is highly correlated.  This is achieved through the use of measures 
like the information gain [21] or, more commonly, through cross-validation techniques [20].  

Another distinct feature between primary and secondary data is related with data accessibility.  
Typically, primary data is readily available on a convenient flat file.  This is far from true in the case 
of secondary data.  In secondary data, accessibility problems range from computational problems 
(e.g.  incompatible data files), to different measurement units for the same variables, and all sorts 
of non-numeric data.  All these issues need to be tackled, as they are bound to have negative 
impacts in the outcome of the analysis.  In this context we can look at using primary data as deciding 
on the recipe and then go to the supermarket; using secondary data is more about “making do” with 
whatever ingredients are available. 

Another important characteristic of secondary data is the evolving nature of the datasets.  The data 
may come from operational processes that are continuously generating data, many times requiring 
real time analysis.  Since the processes that are generating the data are usually subject to variations 
with time, the characteristics of the dataset are continuously changing.  This is also known as 
population drift, and a typical example is the change in the population of bank applicants as a 
consequence of macro-economic cycles.  Clearly this constitutes a form of nonstationarity.   

Finally, secondary datasets often have unreliable, or erroneous data.  In primary datasets, the value 
of data during its recording is clearly perceived, and thus serious effort if dedicated to filtering 
unreliable data.  Since the exact analysis objectives are not clear when recording what will be used 
as secondary datasets, errors can easily go undetected. 

Despite all these problems data mining tools, have emerged and grown tremendously in importance 
in recent years.  In [16] the author describes the particular characteristics of data usually used in 
data mining tasks.  Data mining is concerned mainly with analyzing these secondary datasets, so as 
to extract knowledge from these datasets.  Most techniques used in data mining come from the 
machine learning community, and have proved to deal quite well with secondary data.  Their 
orientation towards inductive strategies has eluded most of these problems and contributed to the 
establishment of data mining as an effective way to explore these datasets.   

We argue that spatial data can be considered a specific set of secondary data from two perspectives.  
First, it is mainly obtained with no specific analysis objectives in mind, as is case of census data, 
administrative data or satellite images.  Second, its characteristics are similar to those observed in 
typical secondary data, such as the dependency issues described above, selection bias, fuzziness, 
redundancy and even nonstationarity.    

Before the craze with database analysis, when most analysis were done on (small and clean) datasets 
especially collected for that purpose, spatial data was in fact special but today  its characteristics 
cannot be thought of as unique (or special), as most of these characteristics can also be found 
elsewhere.   

CONCLUSIONS 

We reviewed the basis for the claims that “spatial data is special” by analyzing the properties of 
spatial data.  Next, we analyzed the most significant characteristics of secondary datasets usually 
used in the context of data mining.  We concluded that most of the problems that affect spatial data 
can also be found within the realm of secondary data.  Thus we argue that the unique nature of 
GIScience analysis is due not to the data itself, but to the particular perspective and interests of the 
GIScience analyst. 



The premises that “spatial data is special” were true when only traditional statistical techniques 
concerned with primary data were used for analysis.  A lot of the traditional statistic theory is 
concerned with primary data analysis.  In fact entire sub-disciplines (e.g. sampling design, 
experimental design) were developed to facilitate the efficient collection of data so as to answer 
specific questions [16].  The objective is to be able to make reliable inference based on minimal 
datasets, “make statements about a population when one has observed only a sample” [19].  This is 
a valuable and powerful body of knowledge, which constitutes the corner-stone of much of today’s 
research.   

When trying to use traditional statistical tools on spatial data, much care should indeed be taken, for 
we have seen that spatial data does not have the properties that these methods normally assume.  
But to be fair, even traditional statistics has evolved to break free of overtly restrictive assumptions, 
and many techniques are available to deal with some of the characteristics found in spatial data .   

One of the consequences of recognizing spatial data as an instance of the wider set of secondary 
data is the possibility of adopting tools that have proved to be adequate to deal with secondary 
data.  Data mining encompasses a large set of tools which have been increasing as more 
organizations and researchers understand their value and potential. These tools have proved their 
value in numerous problems and even in landmark projects such as the human genome project.   

Although essentially data-driven these tools are theoretically well founded and constitute the result 
of decades of research in many different fields.  There is no fundamental reason for GIScience ignore 
them.  It is much easier to use the basis provided by these tools, eventually improving or adapting 
then by introducing the GIScience reasoning, than to dismiss them as irrelevant and start from 
scratch.  The idea that GIScience needs something completely new is not only unrealistic but also 
dangerous.  It is unrealistic because a relatively small research community, such as GIScience, 
would, at best, take years of research to develop such tools.  It is dangerous because GIScientist and 
Geographers are not the best equipped researchers to conceive and design such tools.  Moreover, 
emphasizing the inductive nature of data mining tools as an excuse to ignore its workings, 
theoretical foundations and limitations constitutes a wrong approach.  Addressing neural networks as 
essentially black boxes in which we include all the available data and wait for them to crunch it and 
return a relevant answer is truly misplaced.   

Casting all data analysis problems as search problems which can be addressed through a “brute 
force” approach is uninteresting and will lead to infertile results.  From our perspective the right 
approach consists on a close analysis of the different tools and finding ways to introduce the 
GIScience reasoning and unique perspective.  This involves a thorough understanding of the potential 
and limitation of the tools and methodologies provided by data mining, but also the notion that 
there are some important paradigms within GIScience that should be respected. 

It is not spatial data that is special, what is special is way in which GIScience “looks” at problems, 
with a particular perspective, with a unique interest in space and how space impacts phenomena 
with spatial representation. The challenge is to make good use of the new tools made available 
through data mining.  Good use will surely mean different things for different GIScience researchers.  
For us it means taking advantage of the potential enclosed in these tools to deal with complex 
problems and large datasets, while remembering that space and location constitute the heart of 
GIScience.  Solving practical problems is good, but is not good enough for a researcher.  It is 
fundamental to “distill” knowledge, hopefully leading to a more axiomatic GIScience field.  We feel 
that data mining tools have a role in this search for knowledge although the way in which they may 
contribute is not completely clear. 
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