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Abstract. Clustering techniques are frequently used to analyze census data and 
obtain meaningful large scale groups. One of the  most used techniques is the 
widely known k-means clustering algorithm. In recent years, Kohonen’s self-
organizing Maps have been successfully used to perform similar tasks. Never-
theless, evaluation studies comparing these two approaches are rare and usually 
inconclusive. In this paper an experimental approach to this problem is 
adopted. Through the use of synthetic data a particular environment is set up, 
and these two approaches are compared. Additional, tests are performed using 
real-world data based on the small area Portuguese census data. The tests focus 
on two main issues. The first concerns the quality of the K-means algorithm as 
an intra-cluster variance minimization tool, when compared with Self-
Organizing Maps. The second issue deals with the structural impact that sub-
optimal solutions, found using k-means, can have in the resulting clustering. The 
results of the empirical experiments suggest that Self-Organizing Maps (SOM) 
are more robust to outliers than the k-means method. 

1   Introduction 

The connection of Geographical Information Systems (GIS) and census data made 
available a huge volume of digital geo-referenced data [1]. This created opportunities 
to improve the available knowledge on a number of socio-economic phenomena that 
are at the heart of Geographical Information Science (GISc). Nevertheless, it also 
shaped new challenges and raised unexpected difficulties on the analysis of multivari-
ate spatially referenced data. Today, the availability of methods able to perform sensi-
ble data reduction, on vast amounts of high dimensional data, is a central issue in 
science generically and GIScience is no exception. The need to transform into informa-
tion the massive digital databases that result from decennial census operations has 
stimulated work in a number of research areas.  

The term cluster analysis encompasses a wide group of algorithms (for a compre-
hensive review see [2]). The main goal of such algorithms is to organize data into 



meaningful structures. This is achieved through the arrangement of data observations 
into groups based on similarity. These methods have been extensively applied in dif-
ferent research areas including data mining [3, 4], pattern recognition [5, 6], statistical 
data analysis [7]. Geographers and urban researchers are among those who have heav-
ily relied on cluster algorithms within their research work [8, 9]. Research on geodemo-
graphics [10-12] [13], identification of deprived areas [14], and social services provi-
sion [15] are examples of the relevance that clustering algorithms have within today’s 
GISc research. For this reason possible improvements on existing clustering method-
ologies and the introduction of new tools constitute a relevant issue in GISc.  

Recently, Self-Organizing Maps have been proposed as a step forward in the im-
provement of small-area typologies based on census data [12], traditionally developed 
using k-means algorithms. In fact, there have been tests comparing SOM’s with other 
clustering methods such as k-means [16-18]. Conclusions seem to be ambivalent as 
different authors point to different conclusions, and no definitive results have 
emerged from extensive testing. Some authors [19] [16, 17] suggest that SOM performs 
equal or worst than statistical approaches, other authors conclude the opposite [18] 
[12].  

The main objective of this paper is to evaluate the performance of the SOM and k-
means in the clustering problem, under specific conditions. Especially relevant is the 
possibility of providing empirical evidence to support the allegations that SOM can be 
a more effective tool in census-based data clustering. It is well known that data quality 
is often a problem and has negative effects on the quality of the results. Robustness 
to outliers and poor quality data is certainly an important characteristic of any algo-
rithm used in census data clustering. Clustering methods should be capable of provid-
ing satisfactory results and tackle the challenges prompted by census data.  

The issue of proving the superiority of one clustering method over another is diffi-
cult and the criteria to establish comparisons elusive. The methodology used here to 
compare the performance of the two algorithms consists in using two synthetic data-
sets, and three real-world datasets are used to evaluate and confirm findings made in 
the synthetic datasets. 

In the next section an overview of the characteristics and problems affecting cen-
sus-based data is made, followed by a presentation of the formal clustering problem. In 
section three the methods tested are presented, with emphasis on the description of 
the SOM. Section four presents the different sets of data used in testing the algo-
rithms. Section five deals with the results from the tests and finally, section six ad-
dresses the conclusion that can be drawn from this work. 

2  Census Data Characteristics and the Standard Process of 
Classification 

Census data is a fundamental source of information in numerous research areas within 
GISc. Because of this , algorithms used by geographers for clustering should be capa-
ble of dealing with specific problems associated with the use of census data [13]. For 



the purpose of this work we would like to highlight the problems which result from 
dealing with high dimensional datasets that may have measurement errors. Addition-
ally, and more closely related with the special nature of spatial data [20], in census 
datasets one should expect variations in size and homogeneity in the geographical 
units and also non-stationary in the relations between variables, which are bound to 
change across regions. All these problems concur to the complexity which is involved 
in clustering census data. Emphasis should be put on the importance of using robust 
clustering algorithms, algorithms which, as much as possible, should be insensible to 
the presence of outliers.  

Closely related with robustness is the capability of modelling locally, preserving 
the impact of errors and inaccuracies in data within local structures of the clustering, 
rather than allowing these problems to have a global impact on the results. The idea is 
to find algorithms which degrade progressively in the presence of outliers instead of 
abruptly disrupting the clustering structure. Improvements in clustering algorithms will 
yield benefits in all research areas which use census data as part of their analysis 
process [12]. Although the performance of the clustering methods in itself is not 
enough to solve all the problems related with the quality of census based clusterings, 
it is definitely a relevant issue. 

The common procedure of clustering census data includes the following 7 steps 
[21]:  

1. Definition of the clustering objective;  
2. Careful choice of the variables to use; 
3. Normalizing and orthogonalizing the data; 
4. Clustering the data; 
5. Labelling, interpretation and evaluation; 
6. Mapping the results; 
7. Regionalizing. 

Here we concentrate in step 4, the clustering algorithm that should be used to 
achieve the desired data reduction. In recent years alternatives to the K-means algo-
rithm have been proposed. A number of authors have pointed out the potential of 
using SOM’s in clustering tasks, e.g. [22]. Specifically in GISc, SOM has been pro-
posed as an improvement over k-means method on the grounds that it provides a more 
flexible approach to census data clustering [13], a property which can be a particularly 
useful. Nevertheless, hard evidence of the superiority of SOM over k-means in cluster-
ing census data is still missing. There are well known properties which characterize the 
k-means clustering algorithm. First, and due to the use of Euclidean distance, k-means 
is especially effective dealing with Gaussian distributions [23]. Secondly, k-means 
performance is especially sensible to the presence of outliers [2, 24]. Thirdly, initializa-
tion conditions have an important impact on the performance of the method.  



3   Self-Organizing Map and K-Means Algorithm 

Although the term “Self-Organizing Map” could be applied to a number of different 
approaches, we shall use it as a synonym of Kohonen’s Self Organizing Map [25] [22], 
or SOM for short, also known as Kohonen Neural Networks. These maps are primarily 
visualization and analysis tools for high dimensional data [22], but they have been 
used for clustering, dimensionality reduction, classification, sampling, vector quantiza-
tion, and data-mining [22, 26]. 

The basic idea of a SOM is to map the data patterns onto a n-dimensional grid of 
neurons or units. That grid forms what is known as the output space, as opposed to 
the input space where the data patterns are. This mapping tries to preserve topological 
relations, i.e., patterns that are close in the input space will be mapped to units that are 
close in the output space, and vice-versa. So as to allow an easy visualization, the 
output space is usually 1 or 2 dimensional. The basic SOM training algorithm can be 
described as follows: 

 

 
 
The neighborhood function h is usually a function that decreases with the distance 

(in the output space) to the winning unit, and is responsible for the interactions be-
tween different units. During training, the radius of this function will usually decrease, 
so that each unit will become more isolated from the effects of its neighbors. It is im-
portant to note that many implementations of SOM decrease this radius to 1, meaning 
that even in the final stages of training each unit will have an effect on its nearest 
neighbors, while other implementations allow this parameter to decrease to zero. The 
learning rate a must converge to 0 so as to guarantee convergence and stability for the 
SOM [22]. 

The k-means is widely known and used so only a brief outline of the algorithm is 
presented (for a thorough review see [5-7]. K-means is an iterative procedure, to place 
cluster centers, which quickly converges to a local minimum of its objective function 
[24, 27]. This objective function is sum of the squared Euclidean distance (L2) between 



each data point and its nearest cluster center [24, 28] this is also known as “square-
error distortion” [29]. It has been shown that k-means is basically a gradient algorithm 
[28, 30] which justifies the convergence properties of the algorithm. 

The original online algorithm [31] is as follows: 
 

 
 

There are a large number of variants of the k-means algorithm. In this study we use 
the generalized Lloyd’s algorithm [6, 32], which yields the same results as the algo-
rithm above [30]. The popularity of this variant in statistical analysis is due to its sim-
plicity and flexibility. As the generalized Lloyd’s algorithm doesn’t specify the place-
ment of the initial seeds, in this particular application the initialization is done through 
randomly assigning observations as a cluster seeds. 

It must be noted that SOM and k-means algorithms are rigorously identical when 
the radius of the neighborhood function in the SOM equals zero [33]. In this case the 
update only occurs in the winning unit just as happens in k-means (step 4). 

4   Experimental Setting 

4.1   Datasets used  

The data used in the tests is composed of 4 basic datasets, two synthetic and two real-
world. The real-world datasets used are the well known iris dataset [34] and sonar 
dataset [35]. The iris dataset has 150 observations with 4 attributes and 3 classes, 
while the sonar dataset has 208 observations with 60 attributes and 2 classes. Two 
synthetic datasets were created to compare the robustness of the two clustering meth-
ods. The first dataset, DS1, comprises 400 observations in two-dimensions with 4 
clusters. Each of these clusters has 100 observations with a Gaussian distribution 
around a fixed center, as shown in figure 1. The variance of these Gaussians was 
gradually increased during our experiments, yielding quite scattered clusters as de-



picted in figure 2. The second data set, DS2, consists of 750 observations with 5 clus-
ters with Gaussian distributions defined in a 16 dimensional space.  
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Fig. 1. The DS1 with the lowest value of standard deviation, showing 4 well defined clusters of 
100 observations 
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Fig. 2. The DS1 with the highest value of standard deviation, the 4 clusters are not identifiable 
as observations are very scattered 

4.2   Robustness assessment measures 

In order to access the performance of the two methods a set of three measurements 
was used. The first one is the quadratic error i.e., the sum of the squared distances of 
each point to the centroid of its cluster. This error is divided by the total dispersion of 
each cluster so as to obtain a relative measure. This measure is particularly relevant as 
it is the objective function of the k-means algorithm. Additionally, the standard devia-
tion of the mean quantization error is calculated in order to evaluate the stability of the 
results found in the different trials. The second measure used to evaluate the cluster-
ing is the mean classification error. This measure is only valid in the case of classifica-
tion problems and is  the number of observations attributed to a cluster where they do 
not belong. Finally, a structural measurement is used in order to understand if the 
structural coherence of the groups is preserved by the clustering method. This meas-
ure is obtained by attributing to each cluster center a label based on the labels of the 
observations which belong to its Voronoi polygon. If more than one centroid receive a 
given label (and thus at least one of the labels is not attributed) then the partition is 
considered to be structurally damaged. 

5   Results 

Each one of the datasets was processed 100 times by each algorithm, and the results 
presented in table 1 constitute counts or means. Table 1 presents a summary of the 
most relevant results. A general analysis of table 1 shows a tendency for SOM to 
outperform k-means. The mean quadratic error over all the datasets used is always 
smaller in the case of the SOM, although in some cases the difference is not suffi-
ciently large to allow conclusions. The standard deviation of the quadratic error is 
quite enlightening showing smaller variations in the performance of the SOM algo-
rithms. The class error indicator reveals a behavior similar to the mean quadratic error. 
Finally, the structural error is quite explicit making the case that SOM robustness is 
superior to k-means. 

Looking closer at the results in different datasets, there is only one data set in 
which k-means is not affected by structural errors. The reason for this is related with 
the configuration of the solution space. In the sonar dataset the starting positions of 
the k-means algorithm are less relevant than in the other 3 datasets. 

Table 1.  

Dataset Method Quadratic error Std(Qerr) ClassErr Struct Err 
IRIS SOM 86.67 0.33 9.22 0 



 k-means 91.35 25.76 15.23 18 
SOM 280.80 0.10 45.12 0 

SONAR 
k-means 280.98 3.18 45.34 0 

SOM 9651.46 470.36 1.01 0 
DS1 

k-means 11341.49 2320.27 12.77 58 
SOM 27116.40 21.60 7.40 0 

DS2 
k-means 27807.97 763.22 15.51 49 

 
 
Figure 3 shows the results achieved by the two methods in dataset DS1. It is quite 

clear that SOM is more stable than k-means as the structural coherence of the cluster-
ing varies very little. With low levels of standard deviation (all observations very close 
the clusters centroids) k-means shows a poor performance failing structural coherence 
in more than 50% of the runs. On the contrary the SOM fails to get the right structure 
only 10% of the runs. As the standard deviation grows k-means improves the percent-
age of runs in which the structural coherence is right. Nevertheless, it never gets to 
the 100% level in which SOM scores in every run between 0.2 and 0.9 standard devia-
tion. 
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Fig. 3. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right) lead to the 

same summed estimate at xs. This shows a figure consisting of different types of lines. Ele-

ments of the figure described in the caption should be set in italics, in parentheses, as shown in 
this sample caption. The last sentence of a figure caption should generally end without a period 

 
Through the tests it became clear that initialization conditions play a major role in 

the quality of the results produced by the k-means algorithm, as it has been noted by 
different authors (e.g [23]). A number of strategies have been proposed in order to 
improve k-means tolerance to initial conditions. These are beyond the scope of this 



paper. Clearly the gradient nature of the k-means algorithm, which largely accounts for 
its computational efficiency, is also responsible for its sensitivity to local optima. 

The real-world dataset refers to enumeration districts (ED) of the Lisbon Metropoli-
tan Area and includes 3968 ED’s which are characterized based on 65 variables, from 
the Portuguese census of 2001. Exploratory analysis of this dataset using large size 
SOMs and U-Matrices suggests that we should consider 6 clusters within this dataset. 
To find the exact locations and members of these 6 clusters we applied a batch k-
means algorithm to this data, and compared the results with those obtained with a 6x1 
SOM. In both cases we repeated the experiment 100 times with random initializations. 
The quadratic error obtained with k-means was 3543 ± 23 with a minimum of 3528, 
whereas with SOM we obtained 3533 ± 6 with a minimum of 3529. In figure 4 we pre-
sent a histogram of the quadratic errors obtained with both approaches. 

 

 
 

Fig. 4. Histogram of the quadratic errors using k-means and SOM to cluster Lisbon’s census 
data into 6 groups  

These results show that the best clustering obtained with each method is practi-
cally the same, but on average SOM outperforms k-means and has far less variation in 
it’s results. 



6   Conclusions 

The first and most important conclusion that can be drawn from this study is that 
SOM is less prone to local optima than k-means. During our tests it is quite evident 
that the search space is better explored by SOM. This is due to the effect of the 
neighborhood parameter which forces units to move according to each other in the 
early stages of the process. This characteristic can be seen as an “annealing sched-
ule” which provides an early exploration of the search space [36]. On the other hand, 
k-means gradient orientation forces a premature convergence which, depending on the 
initialization, may frequently yield local optimum solutions. 

It is important to note that there are certain conditions that must be observed in or-
der to render robust performances from SOM. First it is important to start the process 
using a high learning rate and neighborhood radius, and progressively reduce both 
parameters to zero. This constitutes a requirement for convergence [22] but also raises 
the probability of reaching optimal results.  

SOM’s dimensionality is also an issue, as our tests indicate that 1-dimensional 
SOM will outperform 2-dimensional matrices. This can be explained by the fact that the 
“tension” exerted in each unit by the neighboring units is much higher in the case of 
the matrix configuration. This tension limits the plasticity of the SOM to adapt to the 
particular distribution of the dataset. Clearly, when using a small number of units it is 
easier to adapt a line than a matrix.  

These results support Openshaw’s claim which points to the superiority of SOM 
when dealing with problems having multiple optima. Basically, SOM offers the oppor-
tunity for an early exploration of the search space, and as the process continues it 
gradually narrows the search. By the end of the search process (providing the 
neighborhood radius decreases to zero) the SOM is exactly the same as k-means, 
which allows for a minimization of the distances between the observations and the 
cluster centers. 
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