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Abstract 

In this chapter, an overview of different variants of the original Self-Organizing Map algorithm is presented, 

with an emphasis on those that can integrate spatial reasoning or otherwise be applied in the context of 

Geographic Information Science. A few of the most relevant variants are discussed, together with a recently 

developed variant proposed by the authors. An example of the application of some SOM variants to an artificial 

dataset is presented, and their main advantages pointed out. Finally, these variants are used to solve a real world 

problem, and conclusions and recommendations for future work are given.  
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INTRODUCTION 

The development and sophistication of today’s geo-referenced data collection technologies 

has created a continuous stream of data which has been flooding our databases. This trend 

will build up in the next years as already available technologies find their way into our daily 

lives. Data collection through location-aware devices, high resolution remote sensing systems, 

decennial census operations, among other connected with Geographic Information Systems 

(GIS) made available huge volumes of geo-referenced data. This created opportunities to 

improve the available knowledge on a number of socio-economic phenomena that are at the 

heart of Geographical Information Science (GIScience). 

These trends have shaped new challenges and raised unexpected difficulties on the analysis of 

high dimensional multivariate spatially referenced data. Today, the availability of methods 
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able to perform intelligent data reduction is a central issue in science generically and 

GIScience is no exception. The need to transform into knowledge the massive digital geo-

referenced databases has stimulated work in a number of research areas. It also led 

GIScientists to search for new tools, which are able to make sense of such complexity. The 

field of knowledge discovery constitutes one of the most relevant stakes is GIScience research 

to deal with this problem. Although knowledge discovery and data mining have put forward 

numerous methodologies and tools, the need to adequate those tools to the specific context of 

GIScience remains a research challenge (Openshaw and Openshaw, 1997, Openshaw, 1999).  

Self-Organizing Maps have been proposed as a step forward in the improvement the data 

reduction task (Openshaw and Wymer, 1995) and have been used, with good results, to 

address different GIScience problems as we shall see later in this chapter. In general, these 

applications are based on the original SOM algorithm, but the most relevant research problem 

is to seek ways to adapt the algorithm to the specific difficulties caused by the special nature 

of the geographic data. In fact, the possibilities of altering the original SOM original 

algorithm are almost endless, so this flexibility can be used take into account the special 

features of geoinformation. 

The main objective of this paper is to present a structured view of the possible modifications 

of the original SOM algorithm to develop SOM variants which are relevant to GIScience.  

We shall start by overviewing some important parameterizations of the SOM algorithm, and 

then proceed to analyze how the different steps of the algorithm may be changed. We will 

then overview some of the most relevant variants. Finally we will explain in detail the Geo-

SOM variant, together with an example of its application to an artificial data problem and a 

real world problem. 
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SOME IMPORTANT PARAMETRIZATIONS OF THE ORIGINAL SELF-

ORGANIZING MAP ALGORITHM  

Although they do not constitute true variants of the original algorithm, some parameterization 

choices can radically change the way the SOM may be used. We will discuss three of them, 

namely: 

1. Size of the map   

2. Output space dimension 

3. Training schedule 

Size of the map 

There are three major options in terms of the size of the SOM. The first one consists on 

building a very big SOM in which the number of neurons is greater to the number of input 

patterns (Ultsch and Siemon, 1990, Ultsch and Li, 1993). The second and by far most 

common option is to build a medium size map, smaller than the number of input patterns, but 

still large enough to have a few units representing each cluster of data (Kohonen, 2001). 

Finally, there is also the possibility of building small maps where the number of units is 

drastically smaller than the number of input vectors, usually with only one unit for each 

expected cluster (Bação et al., 2004a). The relevance of these choices is so big that it can be 

argued that they lead to completely different tasks.  

When opting for a big map the underlying assumption is that we whish to explore the 

structural context of the data. By using more units than input patterns it is possible to obtain 

very large U-Matrices (Ultsch and Siemon, 1990) on which distances between input patterns 

can easily be identified. This can be seen as a strictly exploratory exercise, providing an 

augmented space which will only be helpful if the user is able to interpret the results. Clearly, 
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the data reduction is solely based in the squashing of the n-dimensional space into a 1, 2 or 3-

dimensional space. 

The decision to build a medium size map can be seen as a compromise, in the sense that 

although reducing the number of dimensions and creating clusters, it still enables the user to 

understand the basic structure of the data, eventually informing further and more severe 

reductions.  

Finally, small maps are used when the user is interested in clustering the data without 

concerns about the analysis of the structure. Here the objective is to form clusters of input 

patterns which are as similar as possible, aiming at a one step substantial data reduction. In 

this context the U-matrix is of little value, and component planes (Kohonen, 2001) become 

more relevant as they allow a simple characterization of the resulting clusters.  

Output space dimension 

The output space can have as many dimensions as the input space (in fact it can have even 

more). Nevertheless the output space seldom has more than 2-dimensions, because of 

visualization restrictions. Theoretically, the appropriate dimension of the map should be 

defined by the intrinsic dimension of the data (Fukunaga and Olsen, 1971, Camastra, 2001). 

This constitutes a problem since we rarely have such information. The possibility of 

visualizing the results, which is very relevant, together with the incapacity to confirm the true 

dimensionality of the map usually leads to opt for 1 or 2 dimensional map.  

When the objective is to cluster based on very small SOM’s the best approach is to use 1-D 

SOMs. This is due to the fact that the plasticity of the 1-D map is much greater than a 2-D 

SOM (Bação et al., 2004a). This fact is apparent in the application to the traveling salesman 

problem (Maenou et al., 1997) where 1-D SOMs are preferred to 2-D SOMs. The need to 

closely represent a number of points that can form complex geometric shapes render 

inefficient the use of 2-D SOMs. On the other hand, if the objective is to obtain a 
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comprehensive visualization of the input space then a 2-D SOM is to be preferred. The 

rationale is that the higher level of connectivity will yield a better coverage of the input space. 

Finally, it is important to refer that any SOM will produce a bias in the representation of the 

input space. In fact, the distribution of the classification resources (units) will be more than 

proportional in lower density areas. This effect is usually designated as “magnification effect” 

(Cottrell et al., 1998, Claussen, 2003). The quantification of this effect has proven to be 

elusive and is still an unresolved issue. 

Training Schedule 

The first step in building a SOM usually involves giving initial values to the units. This may 

be done using completely random values (which usually leads to slow convergence towards 

the general area of the data), or using values obtained from randomly selected input patterns. 

This type of initialization will usually produce maps which take a long time to unfold, or may 

not unfold at all (Kohonen, 2001). Better maps are usually obtained if the units are laid out on 

a 2-dimensional plane and centred near the mean of the input patterns.  The plane may be 

defined, for example, by the two first eigenvectors of the input patterns. 

The counting of training iterations may also vary from one implementation to another. While 

the well known SOM-PAK implementation (Kohonen et al., 1995) counts each presentation 

of an input pattern as an iteration, and adjusts the learning parameters after each iteration, 

most implementations count “epochs” that present the whole training data set, and only then 

do they adjust the training parameters. In the latter case, the parameters of the units may be 

updated after each input pattern is presented, in what is called on-line or sequential mode, or 

the changes may be stored and applied only after the whole training set is presented, in what 

is called the batch mode. 

The way the learning rate and neighbourhood radius varies during training may also be done 

in different ways. For the SOM to converge to a stable configuration it is necessary to 
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decrease the learning rate to 0. This may however be done in many ways, although we do not 

know of any conclusive analysis of its impact. Some authors have proposed dynamically 

changing learning rules that compensate the magnification effect of the standard SOM 

(Cottrell et al., 1998). In some applications, particularly in on-line system monitoring, it is 

desirable to maintain some plasticity when using the SOM, and so the learning rate does not 

converge to 0. The final value of the neighbourhood radius can have a dramatic effect on the 

final map. If this radius is allowed to decrease to 0, the final stages of training will be 

equivalent to a k-means algorithm, and thus locally optimal. If instead the radius decreases to 

1, then the units will always be pulled away from the local minima, and on the borders of the 

map they will be pulled towards the centre because there are no units pulling them outside de 

map. Both approaches make sense in different contexts, so care must be taken when choosing 

these values.  

 
WAYS TO CHANGE THE ORIGINAL SELF-ORGANIZING MAP ALGORITHM 

Quite a few reviews have been made of the different variants to the standard SOM algorithm 

(Kangas et al., 1990, Vesanto, 1999, Vesanto, 2000). So as to structure the different ways in 

which the basic SOM can be changed, we identified 3 main areas where those changes can 

occur: 

1. Topology and connections between units 

2. Matching and voting mechanism (calculation and voting phases) 

3. Learning rule (update phase) 

We shall now proceed to analyze each of these main areas separately, bearing in mind that 

any particular implementation of a SOM will probably include a combination of these 

different changes. 
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Topology and connection between units 

In the standard SOM the units form some of type of regular grid. Units that are neighbors in 

this grid are influenced by each other, and thus we may consider that a connection exists 

between them. Some variants of SOM change these connections, or eliminate them altogether. 

In the Neural Gas Architecture (NGA) (Martinetz et al., 1993) each unit is completely 

independent of the others, and thus these units do not form a distinct output space. Since there 

is no output space, this variant cannot be used for mapping or projection purposes, but it may 

and has been used for sampling or clustering. The lack of output space forces neighborhoods 

to be calculated in the input space. This means that during the update phase of the training 

algorithm the units are ordered by their distance (in the original input space) to the winning 

neuron, and updated accordingly.  

Another approach is to maintain connections between units, but relax the constrain that they 

form a regular grid, such as happens with the Growing Cell networks (Fritzke, 1991). In this 

type of neural network units are inserted, one at a time, during the training phase, according to 

some established criteria. The resulting network may be quite irregular, and since the number 

of connections each unit has depends on how many units were inserted next to it, no simple 

output space will be formed. This network gave rise to a family of related architectures, 

namely the Growing Neural Gas (Fritzke, 1994) and the Gowing Grid (Fritzke, 1995) that 

allow connections between units to be established or broken during training. 

Even when the units do form a regular grid, some SOM variants allow growth in the number 

of units (Almeida and Rodrigues, 1991) or in the number of dimensions (Bauer and Villmann, 

1997). 

Another form of interaction between units, even stronger than that imposed by the 

neighborhood effect, is to allow units to receive as inputs the outputs of other units. This 

happens in SOMs with feedback used in temporal data analysis (Guimarães et al., 2002), 
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where units receive as inputs the delayed outputs. It also happens in hierarchical SOMs which 

we will discuss later. 

Matching and voting mechanism (calculation and voting phases)  

A large number of variants of the basic SOM change the way the matching between input 

patterns and units is made, and how the best matching unit is selected. A trivial way to change 

the matching mechanism is to use metrics other than the standard Euclidean distance, and 

many such metrics have been used (Kohonen, 2001). 

More interesting variants of the basic SOM can be obtained if the units are allowed to have an 

internal structure that is different from the input patterns. In this case the units cease to be 

points in the input space. One such variant is the Adaptive Subspace SOM (ASSOM) 

(Kohonen, 2001), where the units represent subspace, and the matching is done by calculating 

the distance from the input pattern to the subspace. In temporal SOMs it is relatively common 

to find delay elements associated with the map units, and matching is done using those delays 

or pass activations of the units (Guimarães et al., 2002). The matching may also be done by 

finding the fitness of the input pattern to some given criteria that may be stored in the map 

units. 

In some approaches, only a sub-set of units are searched to find the best match. This happens 

when spatial or temporal restrictions are imposed (Kangas, 1990, Kangas, 1992, 

Chandrasekaran and Liu, 1998, George, 2000), when tree structures are used to accelerate the 

search, and when certain supervised versions of SOM are used (Ritter et al., 1992, Buessler et 

al., 2002).  

Learning rule (update phase) 

In the basic SOM, each unit is updated according to its distance (in the output space) to the 

best matching unit, and to its distance in the input space to the input pattern. The final 

distances in the input space of units that are neighbours in the output space may vary widely. 
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In particular, if there are large differences in the density of input patterns throughout the input 

space, there will be regions where neighbouring units are close and others where they are far 

away. While this is a desirable feature when trying to obtain good U-Matrices (Ultsch et al., 

1993) it causes the map to concentrate or even “collapse” on the areas with greater density. 

This will not be a desirable feature if we want to avoid overspecialization and whish to keep 

some units available to detect new features or outliers. This line of thought led to the 

Visualization Induced SOM (ViSom) (Yin, 2001), where a repulsion force is introduced 

between units, forcing a certain minimum distance between them. It is argued that this 

approach will provide a “broader view” of the input space. Clusters will still be detectable in a 

ViSom by analysing variations in the number of patters that are mapped to different units. 

The direction in which each of the units is updated is usually that of the input pattern. One 

alternative is to move the unit in the direction of the nearest unit, as was proposed by (Lee et 

al., 2001). This resembles the way nodes are pulled in a fisherman’s net, and thus this update 

rule was dubbed fisherman’s rule. It has been shown (Lee et al., 2001) that this will improve 

the convergence speed in the first iterations of the learning phase. The main reason for this is 

that, at each learning step, the different units will not be attracted in exactly the same direction 

(the direction of the input pattern), but will instead be pulled in a direction that depends on 

their immediate neighbours. It is suggested (Lee et al., 2001) that the fisherman’s rule be used 

in the first iterations of the training algorithm, being replaced by the standard rule in the last 

iterations. 

Although the standard SOM is an unsupervised learning algorithm, a number of supervised 

variants exist. It can be argued that the calibration mechanism (Kohonen, 2001) is in fact a 

form of supervised learning, but this does not change the way the SOM is trainined. The most 

common way of introducing supervised learning in the SOM training is to change the way 

units are updated according to the known class of the input pattern. The well known LVQ 
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algorithm (Kohonen, 2001) is one such case, where units are attracted to the input pattern if 

they have the same class, or repelled if it is different. Other supervised versions of SOM have 

also been proposed (Buessler et al., 2002).  

Finally, the update rule may also be changed because of the particularities of the input space 

or the metric used. Such is the case when binary features are used (Gioiello et al., 1992, 

Tanomaru, 1995, Lobo, 2002). In this case, since the only acceptable values for each attribute 

are 0 and 1, the smooth adaptation required by the standard rule in not possible. In (Lobo, 

2002) two update rules are proposed, that require ‘correcting’ a number of bits proportional to 

the desired learning rate. A similar adaptation of the learning rate is required whenever 

categorical data is used, as shown in (Lourenço et al., 2004). 

 

GEO-VARIANTS – INCLUDING GEOGRAPHIC REASONING INTO THE SOM 

In this section we overview some of the applications of SOMs is GIScience problems, and 

will then proceed to cover a selected number of SOM variants which allow for the inclusion 

of geography within the workings of the SOM. 

In (Villmann and Merényi, 2001) and (Villmann et al., 2003) SOM variants are used to 

analyze satellite images. Two different variants are used: the GrowingSOM (Bauer and 

Villmann, 1997), where the SOM is allowed to grow into a n-dimensional hypercube topology 

so as to accurately match the intrinsic dimensionality of the data; and the SOM with 

magnification control (Bauer et al., 1996), which tries to distribute the input patterns evenly 

amongst the map units. An interesting feature of these papers is their use of color-coding to 

extract information from 3-dimensional SOMs. 

Most other utilizations of SOMs in GISience have used the standard SOM algorithm, so only 

a general overview is provided here. Standard SOMs have been used for classification or 

residential areas (Openshaw et al., 1995), for typification in cartography (Sester and Brenner, 
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2000), to visualize the evolution of geodemographic variables (Skupin and Hagelman, 2003), 

and to select cartographic obects (Jiang and Harrie, 2004). Three-dimensional SOMs have 

been used to analyze census data (Takatsuka, 2001). The main contribution of this paper is the 

3-D visualization software (GeoVista studio) that allows a very interesting exploration of the 

data. Parallel implementations of SOMs have also been used (Openshaw and Turton, 1996) to 

enable very large spatial datasets to be analyzed. 

Standard SOMs have been used for spatialization of various systems (Skupin, 2001, Skupin 

and Fabrikant, 2003), including the World-Wide-Web (Girardin, 1996) . 

Although not an application in GIScience itself, in (Mark et al., 2001) standard SOMs are 

used to explore onthological disctinctions of geographic terms, as they are perceived by a 

sample of ‘ordinary’ citizens. 

The variants presented next, although in some cases developed for other types of problems, 

allow for the possibility to explicitly incorporate geo-references and take into account the 

special features of spatial information into the SOM algorithm. One of the fundamental ideas 

consists in embedding the first law of Geography (Tobler, 1970) into the SOM. This can be 

translated into classifying geographical neighbors in similar areas of the output space. A 

balance between geographical proximity and attribute proximity should be achieved. There 

are different ways to accomplish this objective as we will show. 

Hierarchical SOMs 

Hierarchical SOMs change the normal interconnections between units. They are often used in 

application fields where a structured decomposition into smaller and layered problems is 

convenient. One or more than one SOMs are located at each layer, usually operating on 

different thematic variables (see Figure 2.1).  
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Figure 2.1 - Structure of a hierarchical SOM. 

 

Hierarchical SOMs were first introduced in (Ichiki et al., 1991), and were extensively used in 

speech recognition, where each layer deals with higher units of speech, such as phonemes, 

syllables, and word parts (Kempke and Wichert, 1993, Behme et al., 1993, Jiang et al., 1994). 

Hierarchical SOMs can have several lower level partial maps that cluster the data according to 

different characteristics and then pass the results to a upper level SOM, or they may have a 

lower level global SOM, that acts as a gating mechanism to activate one of several higher 

level SOM that specialize in a certain area of the input space.  

In terms of GIScience one can envision the usefulness of hierarchical SOM in applications 

like geodemographics. Hierarchical SOMs allow the creation of purpose-specific or thematic 

classifications at lower layers which are then composed into a single one. This can constitute 

a major advantage as it has been noted that the single purpose geodemographic classifications 

constitute more powerful tools than general purpose classifications (Openshaw and Wymer, 

1995). Additionally, the exploration of different SOMs at lower levels can be very valuable, 

especially if done in a computational environment where dynamic linking between SOMs can 

be set up. This way the interactive exploration of the different classifications can provide 

major insights. The idea is to take one of the SOMs, select specific units and study the 

distribution of the input patterns classified in that particular unit in the other SOMs and in the 

geographic space.  
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Geo-enforced 

One simple way of producing quasi-variants and testing spatial effects is through pre-

processing. Instead of altering the basic SOM algorithm the idea is to include spatial-relevant 

variables which are computed as any other socio-economic variable (Lobo et al., 2004). This 

way there are two major operational decisions to be made. The first has to do with the choice 

of the spatial variables to use. The possibilities are endless, and dependent on the objectives 

pursued. The second one has to do with the weight that should be attributed to the geographic 

variables. Once all the variables are normalized the user has the possibility of deciding how 

much weight each of the variables will have in the calculations, thus giving more or less 

importance to the geographic information. As this approach cannot be considered a variant, it 

will not be discussed here. 

Geographical Hypermap 

In this approach, we change the matching and voting phase of the SOM algorithm. The 

Hypermap architecture was originally proposed in (Kohonen, 1991) for the recognition of 

phonemes in the context of cepstral features. In this architecture the input vector is 

decomposed into two distinct parts, a “context” vector and a “pattern” vector. The basic idea 

lies on treating both parts in different ways. The most common way is to use the context part 

to select the best match, and then adapt the weights using both parts, separately or together. 

However many other variants exist. In a geographic context using a Hypermap implies that 

the classification of a specific input vector is learned in the context of its geographic best 

match. In other words, the Geographical Hypermap will force the classification of input 

patterns based solely on their geographic positioning. This way each unit in the SOM will be a 

simple average of non-geographic attributes in the geographic area it covers. The smoothing 

effect of this averaging depends on the number of units and the density of input patterns. 
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Spatial-Kangas Map 

This approach is yet another way of changing the matching and voting phase of the basic 

SOM. The Spatial-Kangas map introduced in (Lobo et al., 2004) is based on the temporal 

SOM first presented in (Kangas, 1992) and commonly known as Kangas map. The Spatial-

Kangas map extends the underlying principles of the Hypermap, in the sense that the BMU is 

required to be in the geographical neighborhood of the input pattern. However in this 

approach the requirement that the BMU be geographically closest unit is relaxed, requiring 

only that it be close (within a certain radius named “geographical tolerance”). This is done by 

dividing the search for the BMU in two phases: first establish a geographical neighborhood 

where it is admissible to search for the BMU (see Figure 2.2), and then perform the final 

search using the non-geographical components of the input pattern. This can be seen as the 

separation of the vector into two different parts; one that carries the geographic context of the 

pattern, and a second one that provides information for the definition of the BMU within the 

context.  

 

units considered

SOM

Geographic best matchunits considered
for final best match

SOM

units considered

SOM

Geographic best matchunits considered
for final best match

SOM

 

Figure 2.2 - Spatial-Kangas map structure (Geo-SOM with k>0) 

 

Geo-SOM 

One again, this variant changes the matching and voting phase of the basic SOM. The Geo-

SOM constitutes our own conceptualization (Bação et al., 2004b) of the Hypermap and the 
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Spatial-Kangas Map, and can be viewed as a generalization of the concepts presented in the 

three previous points.  

The geographic neighborhood where we search for the BMU can be controlled by a parameter 

k, defined in the output space, and called geographical tolerance. If we choose k=0, then the 

BMU will necessarily be the unit geographically closer, which corresponds to a Hypermap. If 

we allow k to grow up to the size of the map then the geographical coordinates will be 

ignored, corresponding to the original SOM. For k between 0 and the size of the map a 

Spatial-Kangas map will be obtained. 

When k=0, the final locations in the input space of the units will be a quasi-proportional 

representation of the geographical locations of the training patterns (the proportionality is not 

exact due to the already discussed magnification effect), and thus the units will have local 

averages of the training vectors. Exactly the same final result may be obtained by training a 

standard SOM with only the geographical locations, and then using each unit as a low pass 

filter of the non-geographic features. The exact transfer function (or kernel function) of these 

filters depends on the training parameters of the SOM, and is not relevant for this discussion. 

As k (the geographic tolerance) increases, the unit locations will no longer be quasi-

proportional to the locations of the training patterns, and the “equivalent filter” functions of 

the units will become more and more skewed, eventually ceasing to be useful as models. 

Formally, the Geo-SOM may be described by the following algorithm: 
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The Geo-SOM has the potential to organize the SOM output space according to the 

geographic proximities of the input patterns. This way, areas of the geographic map with 

similar characteristics will warrant a smaller number of units than the areas of the map where 

characteristics differ a lot. One of the potential applications for the Geo-SOM is to develop 

homogeneous zones. Contrary to most zone design algorithms (Horn, 1995, Mehrotra et al., 

1998, Macmillan and Pierce, 1994, Alvanides and Openshaw, 1999), in which the number of 

zones is pre-defined, the Geo-SOM can be viewed as an exploratory technique to build zones, 

as will be shown in the Application section of this chapter.  

 

EXPERIMENTAL RESULTS WITH ARTIFICIAL DATA 

In order to assist the comprehension of the major characteristics and properties of the some 

SOM variants, we carry out a set of tests based on artificial data. The objective of using 

artificial data is to produce a controlled environment where certain features of the variants can 

easily be understood. We constructed a toy problem comprising 5000 data points, each of 
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which has geographical coordinates (x and y), and a third variable z that represents non-

geographical data. The points follow a uniform distribution in the geographical coordinates, 

within the rectangle limited by [(0,0), (20, 5)] (see Figure 2.3). In the non-geographical 

dimension there are three zones of high spatial autocorrelation, where the values of z are very 

similar among neighboring points, with a uniform in the interval [90, 91] in two zones, and in 

the interval [10,11] in another. There is also one area of ‘negative autocorrelation’, where half 

the data points have z ≈10 and the other half have z ≈90. In the rest of the input space z has a 

uniform distribution in [0,100].  

 

Figure 2.3 - Artificial dataset. 

 

Five different SOM were used to process the data: a standard SOM, a Geo-SOM with k=0 

(which is similar to the Hypermap), a Geo-SOM with k=1, k=2 and k=4. The k parameter, 

which we call geographic tolerance, refers to the size of the neighborhood amongst which the 

BMU will be searched.  

In order to get a clear image of the error produced by each one of the tested variants we 

decided to separate the error in geographic error and quantization error. The geographic error 

computes the average distance between each input pattern and the unit to which it was 

mapped. This gives a notion of the geographic displacement of the units relatively to the input 

patterns they represent. The quantization error provides an assessment of the distances 

between input patterns and the unit to which they are mapped in the attribute space, in this 
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case the z variable. The quantization error provides a measure of the quality of the 

representation of z (non-geographical attribute) achieved by each variant.  

The results are quite elucidative in the sense that they allow a very clear distinction between 

the behaviors of the different variants. Clearly, the restrictions imposed by Geo-SOM tend to 

degrade the quantization error and improve the geographic error. In terms of quantization 

error the highest value is observed, as would be expected, in the Geo-SOM with the smallest 

geographic tolerance, and decays as k increases, until reaching the minimum with the standard 

SOM. Conversely, the geographic error decreases as k increases. The actual values may be 

seen in Table 2.1. 

 
Type of map 

vs 
Type of error 

GeoSOM 
k=0 

GeoSOM 
k =1 

GeoSOM 
k =2 

GeoSOM 
k =4 

Standard 
SOM 

Geographical error 0.4193 0.8507 1.1800 1.5055 1.6713 

Quantization error 21.0690 12.5902 7.1130 2.4440 0.9030 

Table 2.1 – Average geographical and quantization errors for the artificial dataset 

 

The quantization errors shown in the table are averages for all data patterns, and the 

individual values vary quite a lot. A close inspection of the way this quantization varies 

allows us to identify different clusters, which is one of the main purposes of using these 

techniques. If we calculate the average quantization error of the input patterns that are mapped 

to each individual unit and plot these values in a contour plot, we obtain the results presented 

in Figure 2.4. In this figure we plot the quantization error as a function of the geographical 

coordinates when using Geo-SOMs with k=0 and k=2, and using the standard SOM. 

With k=0 the Geo-SOM is basically performing local averages. The points where those 

averages are calculated follow the geographical distribution of the input patterns, which in 

this case means they are evenly distributed. Areas where “natural” clusters exist are clearly 
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shown by white areas, where the quantization error is low. Areas where there is less spatial 

autocorrelation are represented in progressively darker shades of gray, corresponding to 

increasing quantization errors. From this map little can be inferred about how to define 

regions in those areas. Thus, the choice of k=0 allows us to identify only the clearly 

homogeneous areas. 

 

Figure 2.4 - Maps with the average quantization error per unit (top), and geographical coverage of those 
units (bottom), using the Geo-SOM with k=0 (left), k=2 (center) and the standard SOM (right) 

 

With k=2 the Geo-SOM provides interesting insights into the data. Clearly homogenous areas 

are still very evident, but some new areas with low quantization error appear throughout the 

map. The lower right corner, where the data follows two distinct behaviors is divided 

(approximately along its diagonal) into two homogenous areas, one containing each type of 

data. These are separated by another area that serves as border, where the quantization error is 

quite large. A careful inspection of the remaining area shows stripes of low quantization error. 

These areas of low quantization are in general surrounded by sharp frontiers, which can be 

easily identified by the presence of smaller than average Thiessen polygons. As a conclusion, 

this map allows us to gain insight into less well structured areas of the data. 
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Finally, when using the standard SOM, the map has little information about the geographical 

organization of clusters. Since these are defined mostly by non-geographical attributes, their 

geographical location is basically meaningless and may lead to errors. The lower left corner of 

the map has basically the same configuration as the other corners even though the data in that 

corner are significantly different. We may thus conclude that while the standard SOM may be 

a good clustering tool, it naturally fails to single out the geographical information contained in 

it. 

 

APPLICATION IN A REAL WORLD PROBLEM 

For this study we used data form the INE (Portuguese bureau of statistics), referring to 

Lisbon’s Metropolitan Area. This data is at the Enumeration District (ED) level, and refers to 

65 socio-demographic variables. These variables describe EDs based on 6 main topics: 

information about buildings, families, households, age structure, education levels, and 

economic activities. Additionally, we introduced two explicitly geographic variables, 

representing the x and y coordinates of the geometric centroids of the EDs.  

All variables used were made to be invariant to size, by calculating ratios whenever 

necessary. Further more, all were normalized to be in the [0, 1] interval. In the particular case 

of the (x, y) coordinates, and in order to preserve the original form of the region, the y 

coordinate was allowed to have a different range so as to keep proportionality with the x 

coordinate. 

As with the artificial dataset problem, we used the standard SOM algorithm and compared it 

with the Geo-SOM with k=0, 1, 2, and 4. In Table 2.2 the average geographical and 

quantization errors are presented, and they follow exactly the behavior explained for the 

artificial dataset. 

  



 2-21

Type of map 
vs 

Type of error 

GeoSOM 
K=0 

GeoSOM 
k =1 

GeoSOM 
k =2 

GeoSOM 
k =4 

Standard 
SOM 

Geographical error 0.0096 0.0195 0.0291 0.0457 0.1110 

Quantization error 0.9446 0.8763 0.8265 0.7786 0.6488 

Table 2.2 - Average geographical and quantization errors for Lisbon’s EDs dataset. 

 

Figure 2.5 shows the results obtained. The standard SOM (presented on the right hand side) 

provides no relevant insight into the geographical organization of the data. The map units 

geographical coordinates are mostly close to each other in the center of the map, and the areas 

with low quantization error do not correspond to any meaningful regions. A careful inspection 

of the EDs that are clustered together shows that these are in fact quite far away from each 

other, and the geographical centers of these clusters are meaningless. This is due to the fact 

that in order to maximally reduce the quantization error the best positioning of the units is 

achieved in central areas. 

The Geo-SOM with k=0, although merely calculating local averages, has some advantages 

over other methods. These averages are calculated with more resolution in areas where there 

are more EDs, following the geographic density of the input patterns, which is a desirable 

effect. From observing the map we can easily identify areas with strong spatial 

autocorrelation (depicted in light grey), namely the central area of Lisbon (centre of the map), 

the area behind the south-side beaches, etc. We can also identify areas where the quantization 

error is large (dark grey), indicating that there are large variations in the socio-demographic 

characterization. 
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Figure 2.5 - Maps with the average quantization error per unit (top), and geographical coverage of those 
units (bottom), using the Geo-SOM with k=0 (left), k=2 (center) and the standard SOM (right). The data 

refers to socio-demographic variables of Lisbon are EDs. 

 

The Geo-SOM with k=2 provides further insight on how to define homogenous zones. Some 

of the previously identified zones increase in size or shift slightly, and a number of new 

clusters appear on this map. These new regions can be identified with smaller scale areas, 

which in fact correspond to distinctive areas of Lisbon. 

After processing the data with the Geo-SOM, the user can explore the results and build 

homogenous zones. The procedure for this is quite simple. The basic premise is that areas of 

low quantization error (represented in the maps by light shades of grey) indicate homogenous 

areas, and as quantization error increases the homogeneity decreases. An interesting way of 

approaching the problem is to produce a surface based on the quantization error (Figure 2.6) 

and flood the surface at different levels. With small amounts of water only very similar areas 

will be joined together (areas below water level) but, as the amount of water in the surface 

increases, less similar areas will be joined together. Eventually, only ridges (boundaries 

formed by areas of high quantization error) will be above water level. A parallel can be drawn 

between this approach to zone design and hierarchical clustering. As in hierarchical clustering 
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the Geo-SOM starts with very small homogenous areas (only areas with a very small 

quantization error) and as the surface is flooded the number of homogenous areas decreases 

but their dimension increases.  

 

Figure 2.6 - A contour plot of the quanization error for the Lisbon Metropolitan Area 

 

Clearly, different k values can be tested in the Geo-SOM and the results compared, enabling 

the user to understand the major spatial trends in the data. One of the major advantages of this 

methodology is that it addresses the problem of fuzzy classification, providing an alternative 

to “clear-cut” classifications which present some major drawbacks (Feng and Flowerdew, 

1998, Openshaw and Wymer, 1995). While not completely inclusive (in the sense that it 

doesn’t force all areas to be included in clusters) this approach identifies both the 

homogenous zones and areas which are not included in any zone because of their dissimilarity 

with their neighbors.  

 

CONCLUSIONS 

There are many ways in which the standard SOM can be used in Geographical Science 

problems, and there are many variants that explicitly take into account their spatial nature. An 
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overview of the different SOM variants was presented. A more detailed explanation of one of 

the geographical oriented variants was given together with an example of its application to an 

artificial problem and a real world problem. It was shown that in the latter case, this approach 

can provide a meaningful insight to the spatial data structure. 

The practical application showed that it is possible to use the Geo-SOM to approach the zone 

design problem in an exploratory perspective. Instead of defining the number of zones at the 

beginning of the procedure, the Geo-SOM “lets data speak for themselves” (Gould, 1981), 

allowing an insightful analysis. The Geo-SOM can be thought of as a method which projects 

multidimensional data into the geographic space. The amount of geographic error and 

quantization error is controlled by the k parameter. Thus, as k increases the geographic error 

also increases and the quantization error decreases. The user must experiment with different k 

values in order to strike an adequate trade-off.  

There are a number of issues that remain to be explored in the Geo-SOM. The effect that the 

relation between the density of the input patterns (in the geographic space) and the distance 

between them (in the variable space) has on the distribution of the units is still an open 

problem. Another interesting issue to address in future developments is the possibility of 

using dynamical k values. The idea is to adequate the k parameter according to the specific 

spatial autocorrelation index of the area of the input pattern. 

Looking at the number of different SOM variants proposed in other research fields, it is quite 

probable that in the future GIScience will also “create” its own variants. In fact, the flexibility 

of the algorithm and its wide range of application can be seen as invitations to researchers to 

adapt the original SOM to specific paradigms and problems of GIScience. 

All the programming routines for the architectures presented here are available at: 

www.isegi.unl.pt/docentes/vlobo/projectos/programas/programas.html 
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