
FOCUS

Fernando Bação � Victor Lobo � Marco Painho

Applying genetic algorithms to zone design

Published online: 16 September 2004
� Springer-Verlag 2004

Abstract Genetic algorithms (GA) have been found to
provide global near optimal solutions in a wide range of
complex problems. In this paper genetic algorithms have
been used to deal with the complex problem of zone
design. The zone design problem comprises a large
number of geographical tasks, from which electoral
districting is probably the most well known. The elec-
toral districting problem is described and formalized
mathematically. Different problem encodings, suited to
GA optimization, are presented, together with different
objective functions. A practical real world example is
given and tests performed in order to evaluate the
effectiveness of the GA approach.

Keywords Zone design � Genetic algorithms �
Electoral districting

1 Introduction

The zone design problem (also known as districting)
occurs when n areal units are aggregated into k zones
such that some value function is optimized, subject to
constraints on the topology of the zones (e.g. internal
connectivity) [1]. Probably the most well known instance
of the zone design problem is the electoral districting
problem (for some recent proposals see [2–5]). Electoral
districting consists of the partitioning of areal units,
generally administrative units, into a predetermined
number of zones (districts) such that the units in each
zone are contiguous, each zone is geographically com-
pact and the sum of the populations of the areal units in
any district are as similar as possible or lies within a

predetermined range [5]. It is clear that this problem can
be seen as a special case of the more general knapsack or
clustering problems.

Zone design is an important geographical problem
that is present in a number of geographical tasks besides
electoral districting (references to other areas of appli-
cation can be found in [4, 6]). Zone design algorithms
have been used in school districting [7], in the design of
zones with appropriate characteristics for posterior so-
cio-economic and epidemiological analysis [8–10], in the
design of sales territories [11] and the design of census
output geography [12, 13].

The constraints of the zone design problem are sim-
ilar to the ones that characterize the clustering problem.
Let the set of initial areal units be X ¼ {x1, x2,. . .,xn},
where xi is the ith areal unit. Let the number of zones be
k. Let Zi be the set of all the areal units that belong to
zone Zi. Then:

Zi 6¼ ;; for i ¼ 1; . . . ; k; ð1Þ

Zi \ Zj ¼ ;; for i 6¼ j; ð2Þ

[k
i¼1Zi ¼ X ð3Þ
These constitute the set of constraints that can be

applied equally in clustering and in zone design. Nev-
ertheless, in zone design an additional constraint has to
be included, which accounts for contiguity and creates a
more complex problem. This constraint limits the set of
acceptable solutions to the problem and consists in
assuring contiguity between all the areal units that build
up a zone. Contiguity means that each areal unit in a
zone is connected to every other areal unit via areal units
that are also in the zone.

Algorithms designed to deal with the zone design
problem (for a thorough review see [14]) can broadly
be divided into three categories based on how they
approach the problem. The first category starts by
building all individual zones separately and then
aggregating them into a global solution [15–17]. The
second category consists in modifying an existing plan
(a plan is an acceptable solution to the problem) by
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swapping areal units between zones. Typically a ran-
dom solution to the problem is generated or a previous
existing one is used as seed. The idea is to incremen-
tally modify the solution in order to improve it [4, 5, 8,
18, 19]. The last category consists in generating an
entire solution all at once by simultaneously assigning
every areal unit to a zone [20].

Different optimization strategies have been used
ranging from hill climbing procedures [4] to simulated
annealing [2, 8], tabu search [8] and linear program-
ming associated with branch-and-bound [5]. Neverthe-
less, genetic algorithms remain largely unexplored in
this field. The only reference we found to their use
appears in [21], that provides no details on how GA
were applied to this particular problem. However, GA
have been used extensively as search procedures in re-
lated fields such as the P-Median Problem [22] and
Cluster Analysis [23]. Other fields where complex
optimization problems need to be dealt with, such as
Pattern Recognition, Image Processing and Machine
Learning [24], [25] and [26] have also benefited from
the use of genetic algorithms.

In this paper we will present a solution to the zone
design problem based on genetic algorithms. Two dif-
ferent encoding schemes are proposed, together with two
different optimization functions. These techniques were
applied to a real world problem, and the results are
compared with a well established algorithm and soft-
ware program. In sect. 2 a detailed statement of the
problem is presented, along with a description of the
search space. In sect. 3, a brief overview of the inner
workings of a GA is presented, and our encoding and
parameterization is given. Section 4 presents the real
world problem and the results of the application of our
GA to it. Finally, Sect. 5 contains the final conclusions.

2 Problem statement

A number of optimization criteria can be used in zone
design, depending on the specific task at hand. Even
limiting the domain to electoral districting there is a
wide range of criteria that can be assumed to be relevant
[14, 27]. An important criteria in political districting (as
is the case of the real world problem that we shall
present), is to dismiss the suspicion of deliberate
manipulation of the zones in order to achieve a partic-
ular political result, also known as gerrymandering.1

As such, clear optimization criteria must be specified.
It is generally accepted that there are three essential
characteristics that districts should have [5]:

Population equality;
contiguity;
geographical compactness.
Therefore, our goal is to provide a method able of
producing equally populated, contiguous and com-
pact zones.

Achieving equal population size zones is central in
any political districting problem. A measure of this goal
can be obtained by calculating the sum of the differences
between the population of each zone and the average
population of all the zones. Thus, the simplest objective
function that can be used in the electoral districting
problem is:

min
X

j

jPj � lj ð4Þ

where Pj represents the population of the jth zone and l
the average population per zone. However, sometimes
the ’’obsession’’ with population equality will lead dis-
tricting plans to extremes [28] where contiguity and
compactness are completely overlooked, producing very
thin and long zones, that are intrinsically unnatural.
Therefore, compactness is usually an important factor in
any political districting solution.

There are many ways of defining the ‘‘compactness’’
of a zone [4, 21], but the general idea is that each zone
should be as ‘‘circular’’ as possible. One measure of
compactness, defined here as ‘‘radial compactness’’ is the
sum for all zones, of the sum of Euclidean distances
between the centroids of it’s areal units and the center of
that zone:

Radial Compactness ¼
X

j

X

i¼2Zj

dij ð5Þ

where dij represents the Euclidean distance between
the ith areal unit and the jth zone center. One of the
ways of including this compactness measure in the
objective function, is to include it as a second additive
term:

min
X

j

�
jPj � lj þ

X

i¼2Zj

dij

�
ð6Þ

There is also the possibility of using the product of all
Euclidean distances and population differences within
each zone, giving raise to the following objective func-
tion:

min
X

j

�
jPj � lj�

X

i¼2Zj

dij

�
ð7Þ

Another compactness measure, defined here as
‘‘circumferential compactness’’ is the sum of the ratios
between the square of the perimeter of each zone and it’s
area:

X

i

pr2i
ai

ð8Þ

1 The term is named for Elbridge Gerry who was Massachusetts
governor and in 1812 and with the help of his political party crafted
a district for his own election. At the time someone produced an
illustration of the districting emphasizing its similarities with a
salamander. The term, coined at the time, comes from putting to-
gether Gerry and mander.
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where pri is the perimeter of zone i, and ai is the area of
that zone.2 This measure should be minimized to achieve
the desired result.

The approach used to verify that the contiguity
restriction is respected involves the use of a binary
contiguity which depicts the topological structure of the
areal units. A method to verify contiguity using these
matrices is described in [2]. This verification constitutes
an intermediate step in the algorithm.

When solving the zone design problem, there is al-
ways the possibility of treating different objectives as
hard constraints or make them part of the optimization
function. Here we treat compactness and population
equality as optimization objectives and contiguity as a
quasi-hard constraint. This is done by strongly penaliz-
ing non-contiguous solutions, which in practice excludes
them from final solutions.

The basic idea of this work is to provide the
decision makers, in this case politicians, with good
viable plans (solutions to the problem). These plans
should not be affected by political criteria and should
be seen as options which can be considered before a
final decision is made. Nevertheless, additional criteria
can easily be incorporated in our approach.

3 Problem complexity

One of the reasons why the zone design problem is
especially difficult is due to the size of the solution space.
The dimension of a ‘‘usual’’ real world problem makes
unfeasible any attempt to explicitly enumerate all the
possible solutions [29–31]. The calculation of the total
number of possible solutions for a zone design problem is
similar to the clustering problem and is given by the
Stirling number of the second kind [32], [33], [34]:

Sðn; kÞ ¼ 1

k!

Xk

i¼1
ð�1Þi k

ðk � iÞ!i!

� �
ðk � iÞn ð9Þ

This means that a medium size problem like the one
addressed in the results section of this paper, S (53, 7)
yields 1.22*1041 possible solutions. [34] provides a
formula that accounts for a basic connectivity struc-
ture, where the building blocks are connected in a
chain. It is clear that this is a very special case of
connectivity, very rarely found in real world problems,
in which each building block is connected to only two

neighbors. The dimension of the combinatorial prob-
lem of districting under chain connectivity conditions is
given by:

S ¼ ðn� 1Þ!
ðk � 1Þ!ðn� kÞ! ð10Þ

Additionally, in terms of computational complexity the
zone design problem has been shown to be NP-Complete
[29]. Thus, heuristic techniques seem to be the best road
available to produce solutions to the problem in reason-
able computational time. This is certainly a compromise
but guaranteed optimality, independently of the prob-
lem’s dimension, seems at this stage simply too difficult.

4 Genetic algorithms

Genetic algorithms (GA) are a subset of a broader and
rapidly expanding area known as Evolutionary Com-
puting [35]. As the name indicates, these algorithms
drew inspiration on Darwin’s theory of evolution, and
have been used to solve hard optimization and machine
learning problems [36]. The basic idea is that each
solution to the problem is coded as a bit string, taken to
be a chromosome, possibly with a number of sub-strings
that act as genes. At any given point in time (or gener-
ation), a number of such chromosomes are kept, each
representing a different ‘‘individual’’ or solution to the
problem. Natural selection is simulated by evaluating
the fitness (or goodness) of each solution, measured by
how well it solves the problem at hand, and giving the
best individuals a higher probability of remaining in the
solution pool during the next generation. To obtain new
solutions, two operators are used: crossover, and
mutation. Crossover is implemented by combining bits
of two different chromosomes (possibly divided along
genes), to form a new solution. Mutation is implemented
by randomly changing some bits or chromosomes. The
details of how this basic idea is implemented may vary
considerably.

Given enough time, a conveniently coded GA will
always find an optimal solution. However, to obtain
reasonable solutions in reasonable time, care must be
taken in the encoding of the problem into chromosomes,
and in the choice of the fitness function that will be
optimized.

4.1 Encoding and parameters used

In order to be able to solve the zone design problem
using a genetic algorithm it is fundamental to encode the
partition in such a way that genetic operators may be
used. There are a number of different ways that can be
used to encode a solution to the zone design problem.
Two different encodings are used in this paper.

The first encoding forces each zone to be centered at a
point which represents a centroid of an areal unit. In

2 The reason for choosing this measure in particular is related with
our real world problem. In fact this was the measure proposed by
consultants of the Portuguese government to evaluate the com-
pactness of the different solutions produced. We do not explicitly
use it as an optimization criterion, because it was provided at a late
stage of the development of the project and because its inclusion
would require extensive modification to the software. It is however
used as a final performance measure
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other words the process of finding the appropriate
configuration consists of searching which set of areal
unit centroids should represent the centers of the zones.
A similar encoding was used by [22] to solve the
P-Median problem. All areal units centroids are num-
bered and a solution is encoded as a string of length k
(where k is the number of zones) where the ith element of
the string denotes the position of the center of the ith
zone. The second encoding enables the center of each
zone to be placed anywhere in the study region. Centers
do not have to match a centroid of an areal unit. In this
case the encoding represents the pairs of x,y coordinates
that define the positioning of each zone center. In both
encodings each string represents a possible plan config-
uration and functions 4, 6 and 7 can be used to compute
the fitness function of each string.

The genetic algorithm is randomly initialized with a
population of size p. For the first encoding described
above, p strings of length k are generated and the value
that each position can assume is between 1 and n. In the
second encoding p strings of length 2*k are initialized.
For this encoding, initialization is done forcing all ele-
ments of the strings to be located within the study re-
gion. There are no guidelines for choosing the size of the
initial population. In both cases 10 parallel populations
were used, each one with 25 strings. Migration of strings
between populations can occur with a probability of
0.001. Identical strings are not allowed, so there are no
twins in the population.

At this point, an optimization function is needed in
order to evaluate the p solutions. Functions 6 and 7 were
used, because they combine both compactness and
population equality, as optimization objectives. The
type of selection used is tournament [36], and crossover
probability is 0.95, uniform crossover was used [36] after
some tests with other types of crossover. Mutation rate
was 0.001, and an elitist strategy was used, assuring that
the best individual of the population would always be
carried to the next generation. Finally, the stopping
criterion consisted of ending the algorithm after 5000
generations without improvements.

Thus, the algorithm procedure is as follows:

1. Generate p sets of k points, according to the selected
encoding.

2. For each of the n areal unit centroids find the closest
zone center, and assign the unit to the zone string.

3. Evaluate the fitness of each string, based on the
chosen function and contiguity check.

4. Apply selection, crossover and mutation operators,
creating a new population;

5. Return to step 2 until the stopping criterion is met.

5 Results

This algorithm was applied to a problem that was posed
by the Portuguese Government. The discussion of the
merits and shortcomings of the proportional system,

used in Portugal since the 1974 revolution, has grown in
recent years. The necessity of closing the gap between
electors and elected has been present in the political
agenda of the two main parties in Portugal.

Back in 1998 the Portuguese Government commis-
sioned ISEGI-UNL and 3 other teams to divide the
country into 93 electoral districts where the electors
would choose only one candidate. Portugal is divided
into 18 major regions and each of this should be di-
vided into electoral districts. The number of districts
in each of these regions depends on it’s population
size.

The proposed law itself imposed the first set of rules:

The districts zones must be contiguous.
If possible the unity of the Concelho (NUTS IV3)
must be preserved.
Nevertheless in certain cases it was necessary to use
Freguesias (NUTS V) in order to preserve the next
rule.
The number of voters in each electoral district must
be contained within an upper and lower limit of 25%
of the mean (0.75> · >1.25) of the total electors.

Although the problem was solved for the whole
country in this paper, for the sake of simplicity, we
will present only the results regarding the region of
Lisbon. In Figs. 1 and 2, the areal units are shown
together with their population. As can be seen there
are great asymmetries amongst the population and size
of the different units, increasing the difficulty of find-
ing good solutions.

We compare the results produced using ZDES soft-
ware, from the School of Geography from University of
Leeds [37], and results produced by the GA proposed
here. ZDES uses a simulated annealing algorithm based
on the second approach described in Sect. 1 (it starts
with a random solution to the problem as seed, and then
incrementally modifies it in order to improve it). ZDES
uses Eq. 4 as optimization criterion subject to the con-
tiguity restriction. We choose ZDES for our compari-
sons because it is a well established and well known tool
for this problem and also because it is available as
freeware. Moreover this was the software used to obtain
the solutions that were presented to the politicians in
1998.

Our GA was implemented in C programming lan-
guage. Both encodings of the proposed GA were tested
using Eq. 7 and additionally the second encoding
(encoding 2) was tested with Eq. 6. A summary of the
numerical results is presented in Table 1. The maps
produced by each method can be evaluated in Figs. 3, 4,
5 and 6.

The result obtained with ZDES for the Lisbon area
(Fig. 3) shows a total sum of differences between the
population of each zone and the average population of

3 NUTS is the nomenclature of statistical territorial units, and
constitutes a five-level hierarchical classification, defined by Euro-
stat and used in all EC countries as statistical reporting units.
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9327.43. A critical review of the map shows that the
zones are quite awkward since they lack the compactness
that was described in Sect. 2. If compactness is com-
puted according to Eq. 8 one obtains the value of 315.17,
as shown in Table 1. It thus becomes apparent that some

measure of compactness must explicitly be considered
during the optimization process.

The results produced using ZDES which were dis-
cussed with political representatives attracted major
criticism due to the ‘‘exotic’’ design of some districts.

Fig. 1 Areal units of Lisbon and
their population

Fig. 2 Detail of the smaller areas
of Lisbon and their populations
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From our experience, compactness tends to be especially
important to politicians and people related to non-
quantitative scientific areas like geography and law.
Bearing in mind that the objective of political districting
is to define areas which will have the same political
representative, it is arguable that compactness is a
desirable attribute.

To improve the solution obtained by ZDES and
incorporate this new optimization criterion we applied
the different GA’s described in Sect. 3.1.. Using the first
encoding (zone centers coincide with areal unit cent-
roids) and Eq. 7 as objective function we obtained for
Lisbon the zones presented in Fig. 5. Compactness
measured by Eq. 8 is greatly improved as can be seen in
Table 1. Unfortunately the sum of differences in popu-
lation increases significantly. This increase is due to the
strong restriction in the positioning of the zone centers.
Using the second encoding this problem is overcome, as
can be seen in Table 1.

The results obtained with encoding 2 and Eqs. 7 and
6 respectively are presented in Figs. 4 and 6. As can be
observed in Table 1, encoding 2 produces important
improvements in terms of population equality, when
compared with encoding 1, dropping from 13665.43

(encoding 1) to 6069.43 and 6220.57 (encoding 2 Eqs. 7
and 6 respectively). This result should be expected be-
cause the second encoding allows the evaluation of a
larger number of solutions. It would also be expected
that the values of compactness would degrade some-
what, as happens. But the most interesting fact raised
by these results is that with the second encoding both
objective functions used perform better than ZDES.
The compactness criterion is improved, as would beFig. 3 Zones obtained with ZDES

Fig. 4 Zones created by the Genetic Algorithm using encoding 2 and
equation 7 as fitness function

Fig. 5 Zones created by the Genetic Algorithm using encoding 1 and
equation 7 as fitness function

Table 1 Comparison of the results obtained

Zone design
method

Compactness
(equation 8)

Sum of
population
differences

ZDES 315,17 9327,43
Encoding 1 using equation 7 225,28 13665,43
Encoding 2 using equation 7 270,37 6069,43
Encoding 2 using equation 6 261,47 6220,57
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expected, but the sum of differences in population (the
objective function of ZDES) is also lowered. This latter
result is very encouraging, giving a clear indication that
GA can constitute a research direction with potential
to improve solutions of the zone design problem. The
differences that can be observed between Eqs. 7 and 6
are relatively small and seem to depict the trade-off
between compactness and population equality. The
results obtained when applying Eq 7 are slightly better
in terms of population but less compact. Nevertheless
differences are very small, and it is difficult to draw
conclusions.

The stopping criterion used has an important effect in
the number of strings evaluated for each of the two
encoding schemes. In the case of the first encoding,
generally, after 2000 generations no improvements are
made, which means that approximately 7000 generations
are evaluated (1750000 strings). For the first encoding
the number of possible solutions is the same as in a
location-allocation4 problem. In our real world prob-
lem the total search space is 154143080, meaning that
the genetic algorithm explores approximately 1.1% of
the search space. In the second encoding the number of
possible solutions is not known. Nevertheless using Eq.
9, which constitutes the upper bound, the search space
has 1.22*1041 solutions. Typically, after 20000 genera-
tions improvements stop, meaning that only a very small
fraction of the search space (6250000 strings) is ex-
plored, corresponding to 5*10-33% of that space.

6 Conclusions

A formalization of the electoral districting problem,
suitable for processing by Genetic Algorithms was given.
It was shown that GA provides solutions that can be
considered better than those of other heuristic ap-
proaches, for this specific problem. It is also shown that
choices of encoding and optimization functions have a
major impact on outcomes, as would be expected.
Allowing zone centers to be located anywhere within the
study region (what was here called encoding 2), while
not common in the literature, has enabled the GA to
find better solutions. The application of GA to electoral
districting needs further experimental work, especially
concerning the use of different objective functions. The
possibility of easily parallelizing these algorithms opens
a relevant alternative that can be further explored.
Parallelization is particularly adequate to complex
combinatory problems, which is the case of zone design.
Finally, the possibility of introducing heuristic proce-
dures within the GA, in order to increase efficiency, has
shown valuable results in other fields and can bring
improvements here too.
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