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Carto-SOM: cartogram creation using self-organizing maps
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The basic idea of a cartogram is to distort a geographical map by substituting the

geographic area of a region by some other variable of interest. The objective is to

rescale each region according to the value of the variable of interest while keeping

the map, as much as possible, recognizable. There are several algorithms for

building cartograms. None of these methods has proved to be universally better

than any other, since the trade-offs made to get the correct distortion vary. In this

paper we present a new method for building cartograms, based on self-organizing

neural networks (Kohonen’s self-organizing maps or SOM). The proposed

method is widely available and is easy to carry out, and yet has several appealing

properties, such as easy parallelization, making up a good tool for geographic

data presentation and analysis. We present a series of tests on different problems,

comparing the new algorithm with existing ones. We conclude that it is

competitive and, in some circumstances, can perform better then existing

algorithms.

Keywords: Cartograms; Neural networks; Kohonen self-organizing maps

1. Introduction

Maps have always been an important part of human life, forming one of the oldest

means of human communication. Today, maps continue to play an important role

in our society describing and communicating many geographic (and other) facts.

They may be regarded as a means for converting large amounts of data into

information that can be easily understood by human beings. The arrival of personal

computers and the consequent increase in geoprocessing capacities had an impact

not only on map availability but also on map-making tools. Today almost

everybody has access to tools which make maps at the push of a button.

Cartograms are a type of map or a map variant. The difference between most

traditional maps and a cartogram is the variable that defines the size of the regions. In

most traditional maps this variable is the geographic area of the regions (or a good

approximation of it), while cartograms may use any other georeferenced variable. In

the context of the famous framework provided by the seven visual variables of Bertin

(1983), the cartogram uses the visual variable size to encode a data variable.

In this paper we present a new algorithm to create cartograms based on a self-

organizing neural network, proposed by Kohonen (2001).
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This paper begins with the definition of cartograms and reviews the most popular

algorithms for building cartograms. We then present a thorough description of the new
algorithm based on the use of self-organizing maps (Carto-SOM). To test the Carto-

SOM method we use three different datasets, and two other algorithms to build

cartograms are used for benchmarking. Finally we perform a quantitative evaluation

of the cartograms produced by the Carto-SOM and the benchmark algorithms.

2. Cartograms

According to Tobler (2004) there are two generic types of cartograms. The first form

of cartogram distorts the space according to a non-geographic metric, such as cost
or time (Tobler 1970). The second form of cartogram distorts the space according to

a georeferenced variable. Depending on the cartogram regions’ continuity

cartograms are classified as non-continuous (Olson 1976) or as continuous. In this

paper we will focus only on continuous cartograms, and for simplicity will use the

word cartogram to refer to these.

‘Cartograms are purposely distorted maps that highlight a variable distribution

by changing the area of objects on the map’ (Changming and Lin 1999). ‘Area

cartograms are deliberate exaggerations of a map according to some external

geography-related variable that communicates information about regions through their

spatial dimensions’ (Dougenik et al. 1985). ‘These dimensions have no correspondence

to the real world but are a representation of one variable other than the area’

(Kocmoud 1997).

In a population cartogram, for example, the sizes of regions are proportional to

the number of inhabitants. While population is the most commonly used, we can use

any social, economic, demographic or geographical variable to build a cartogram.

2.1 Problem definition

As Keim et al. (2005) point out cartogram generation is a map deformation

problem. The inputs of the problem are:

N a polygon map composed of a set of regions, each with an initial area given by

the true geographical area (each polygon matches a region);

N a target value for the final area of each one of the polygons (regions),

representing the variable of interest in that region.

The goal of the map distortion is to approximate, as much as possible, the areas of

the regions to the desired target.

The cartogram problem may be formally described as follows:

Let M5{R0, R1, … Rn} be a map M consisting on n regions Ri, each of which forms

a polygon.

Let T(M) be the contiguity matrix of M.

Let each region Ri have an area of ai (area of its polygon) and a ‘value of interest’ vi

(usually population, average income, or some other variable).

Produce a cartogram map C5{R90, R91, … R9n} consisting of n regions R9i, each of

which forms a polygon with area a9i5kvi, with k5Sa/Sv, and T(C)5T(M).

There is still another goal, loosely described as ‘shape similarity’. Let S be the
shape of M and S9 the shape of C. The objective is that S>S9. The ‘shape similarity’

is an elusive concept that translates the ability of a reader to recognize C as an
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instance of M. This property is difficult to measure and difficult to define rigorously.

The ability to recognize C is not only dependent on the ability to preserve the shape

of each Ri but also on preserving certain landmark points. For instance recognizing

a certain cartogram as a cartogram of the United States is much more dependent on

preserving the shape of Florida than on preserving the shape of North Dakota.

There are many possible cartograms C that achieve the desired goal, but most

mappings from M to C are the result of an iterative process, and only asymptotically

get the desired result (or at least some approximation to it).

3. Methods for building cartograms

Several computer algorithms have been developed to build continuous area

cartograms, and in this paper we will briefly review some of the most important

ones. The reader interested in an extensive and thorough review of the work done in

the last 35 years in cartograms is referred to a recently published paper by Tobler

(2004). In this paper we briefly review eight algorithms that represent different

approaches to the problem and are the most important and effective ones: Rubber-

map cartogram (Tobler 1973), Contiguous Area Cartogram (Dougenik et al. 1985),

Pseudo-cartogram (Tobler 1986), Line Integral Method (Gusein-Zade and Tikunov

1993), Constraint-based Continuous Area Cartogram (House and Kocmoud 1998),

Medial-axes-based cartogram (Keim et al. 2002, 2004, 2005), Rectangular Map

Approximations (Heilmann 2004) and Diffusion cartograms (Gastner and Newman

2004).

The Rubber-map cartogram (Tobler 1973) was one of the first methods created for

population cartograms. This method distorts a map as if it were a rubber surface.

Tobler’s method initially divides the map into a regular grid, computing a density

value for each grid cell. On each cell vertex a displacement direction is computed to

minimize the ‘density error’ of its four adjacent cells. This displacement continues

until no improvement can be made. Since there is a one-to-one mapping between the

initial and final grids a double bivariate interpolation is used to project the map

vertices to and from the final grid.

One of the most famous algorithms to build continuous cartograms is Dougenik’s

Contiguous Area Cartogram (Dougenik et al. 1985). This algorithm is based on

Tobler’s rubber map and uses a model where forces are exerted from each polygon

centroid, acting on its boundary. In this method each polygon centroid applies a force

F to its vertices. This force will move vertices away if F is a positive value and will bring

them closer if F is negative. The intensity of the force exerted on each polygon is

determined by the difference between the current and the desired polygon area. The

current area is the area of the polygon in each iteration, while the desired area is the

distorted area in the final cartogram. In this method, some overlapping might,

occasionally, occur due to complexity of the polygon shapes. However, it presents an

improvement in speed compared to Tobler’s method (Tobler 2004). A 2001 population

cartogram, built with this algorithm, of the USA is shown in Figure 1.

Another cartogram construction algorithm, introduced in 1986 by Tobler, is the

pseudo-cartogram (Tobler 1986). This method is similar to the rubber-map method

and seeks to reduce the area error by adjusting the lines of latitude and longitude on

the map. Tobler’s pseudo-cartogram algorithm starts with a grid superimposed on

the map, after which the horizontal and vertical lines of the grid move, compressing

or expanding the map to get equal density estimation. As with the rubber-map

method, this algorithm suffers from a high dependency on the coordinate system.

Carto-SOM 485
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Zade and Tikunov proposed the Line Integral Method which applies radial
transformations such that the density of the final map is uniform (Gusein-Zade and

Tikunov 1993). The algorithm initially divides the map into a grid of cells. Radial

transformations are applied to each cell making its density uniform, and changing

the shape of the overall map.

In 1998 House and Kocmoud (House and Kocmoud 1998) proposed the

Constraint-based Continuous Area Cartogram. According to this method cartogram

creation is seen as a constrained optimization problem. The map is a connected

collection of polygons and an area function decides each region’s desired area,

according to the total map area and variable of interest. The goal, as in any

cartogram, is to rescale each object keeping map recognition. The search space is

composed by all the maps that keep topology and respect the area function values of
each region. Within these possible solutions, the best map, which is the most

recognizable one, is selected using optimization heuristics.

Figure 1. Cartograms of USA population by state, using different cartogram building
algorithms. (a) Rubber-map cartogram (Tobler 1973); (b) Contiguous area cartogram
(Dougenik et al. 1985); (c) Pseudo-cartogram (Tobler 1986); (d) Constraint-based Continuous
area cartogram (House and Kocmoud 1998); (e) Line Integral Method (Gusein-Zade and
Tikunov 1993); (f) Medial-axes-based cartogram (Keim et al. 2002, 2004, 2005); (g)
Rectangular map approximations (Heilmann et al. 2004); (h) Diffusion cartograms
(Gastner and Newman 2004).
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The medial-axes-based cartogram (Keim et al. 2002, 2004, 2005) uses the medial

axes of an object to build a cartogram. The medial axis is a simplification of the

shape of an object and can be obtained by connecting the centers of the maximum

circles inscribed in the object. The regions are then expanded or compressed along

lines perpendicular to the medial axis (cutting lines). This method presents as a

major advantage its processing time, which the authors claim to be several times

lower than previous methods.

Another cartogram algorithm is the Rectangular Map Approximation (Heilmann

et al. 2004), which represents each region as a rectangle. Each rectangle area is

proportional to some variable. To best recognize the cartogram information, the

method places rectangles as much as possible in the original position and as close as

possible to their neighbors. This method uses genetic algorithms to select the best

cartogram using a given cost function which is defined using the region’s area,

shape, topology, relative position and the spaces without any region. Although this

method produces cartograms with low area errors, it presents two major drawbacks:

topology error is never null, i.e. there will always be some topological differences

between the original and the cartograms regions, and cartogram readability is

hampered due to the use of rectangles instead of the original shapes.

Finally, the diffusion cartograms method (Gastner and Newman 2004) produces

cartograms where density variations cause diffusion from high-density areas into

low-density ones. This method uses the linear process of diffusion from elementary

physics to achieve a solution. It is a simple method, providing a tool to quickly

calculate accurate cartograms. By changing the way that density is estimated, it also

allows the user to switch between more detailed or more easily readable cartograms,

thus increasing its applicability. One of its main advantages is that, using a

continuous problem formulation, it can achieve accurate cartograms even for a high

number of regions (more than 3000). On the other hand it can be argued that

cartograms with a large number of features (i.e. 3000 regions) are not as useful as

smaller ones, due to the difficulty in recognizing the original regions.

From this brief review of the work done in developing algorithms for cartogram

building there are three major conclusions that can be drawn: first, none of the

existing methods is universally better than any other; second, most of these

algorithms are computationally demanding; third, the potential user will encounter

difficulties and challenges in the implementations of the algorithms. These

conclusions suggest that one should examine the different options as they vary in

computational efficiency, ease of implementation and performance. Thus, a new

method that produces different and competitive cartograms can be a useful addition

to the set of algorithms already available.

3.1 Quantitative evaluation of cartograms

While it is subjective to compare the visual quality of different cartograms, it is easy

to define a numerical value that characterizes how well the cartogram shares the

available area between the different regions, according to the given variable of

interest. Various such measures have been proposed. Keim (2004) proposes an area

error function to determine the cartogram error in each region. This relative area

error ei
rel of a region Ri is given by:

ei
rel~

a0i{acurrent
i

�
�

�
�

a0izacurrent
i
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where a9i is the desired area of region Ri in the cartogram (to create a perfect

cartogram) and acurrent
i is the area of region Ri in the cartogram.

Other possible error measures could be used, such as the one proposed by

Kocmoud (1997), or by Henriques (2006), but while having specific advantages and

disadvantages, they do not produce significantly different results (Henriques 2006).

The error used in this paper was Keim’s, and may assume values in [0,1]. For a

perfect cartogram, the error is zero, since in that case each region occupies an area

strictly proportional to the value of its variable of interest. The extreme but

unattainable value 1 would mean that all the map space is used up by a region where

the value of interest is zero, or vice versa.

3.2 Global cartogram error

The error measure given previously is defined for each individual region. Thus, we

need to define a global error that may characterize the overall quality of the

cartogram.

Based on the error e(i,v) of each region Ri in regard to the variable of interest v, we
may define a global measure of the ‘goodness’ of a cartogram by its weighed mean,

simple mean or quadratic mean. The quadratic mean error (mqe) is defined as:

mqe vð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i~1

e i, vð Þ2
s

N

The weighed mean error (we) is:

we vð Þ~
XN

i~1

ai|e i, vð Þj j

The simple average error (se) is:

se vð Þ~
XN

i~1

e i, vð Þj j

These error measures may be applied both to a cartogram and an ordinary

geographical map. The global error of a geographical map is a measure of how much

the variable of interest is misrepresented by the geographical area of the different

regions, and thus how much distortion is necessary to get an accurate cartogram.

4. A new approach for building cartograms based on self-organizing maps (SOM)

In this paper we present a new algorithm to build cartograms based on the SOM.

Teuvo Kohonen proposed the SOM in the beginning of the 1980s (Kohonen 1982)

as a result of his work on associative memory and vector quantization. Although the

term ‘self-organizing map’ could be applied to a number of different approaches, we
shall use it as a synonym of Kohonen’s Self Organizing Map, or SOM for short.

These maps are also referred to as ‘Kohonen Neural Networks’ (Fu 1994), ‘Self-

Organizing Feature Maps – SOFM’, ‘topology preserving feature maps’ (Kohonen

1995), or some variant of these names.

One of SOM’s main objectives is to ‘extract and show’ the essential structures in a

dataset, through a map resulting from an unsupervised learning process (Kaski and
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Lagus 1996, Kaski and Kohonen 1998). The SOM is normally used as a tool for

mapping high-dimensional data into one, two, or three-dimensional feature maps.

The main advantage of the SOM is that it allows us to have some idea of the

structure of the data through the analysis of the resulting map. This is possible

mainly because the SOM preserves topological relations.

The basic idea of a SOM is to map the data patterns onto an n-dimensional grid of

units or neurons. That grid forms what is known as the output space, as opposed to the

input space that is the original space of the data patterns. This mapping tries to preserve

topological relations, i.e. patterns that are close in the input space will be mapped to

units that are close in the output space, and vice versa. The output space will usually be

two-dimensional, and most of the implementations of SOM use a rectangular grid of

units. So as to provide even distances between the units in the output space, hexagonal

grids are sometimes used (Kohonen et al. 1995). Single-dimensional SOM’s are also

common, e.g. for solving the traveling salesman problem (Maenou et al. 1997), and

some authors have used three-dimensional SOM’s (Takatsuka 2001). Using higher

dimensional SOM’s (Villmann et al. 2003), although posing no theoretical obstacle is

rare, since it is not possible to easily visualize the output space.

Each unit, being an input layer unit, has as many weights (sometimes also referred to

as coefficients) as the input patterns, and can thus be regarded as a vector in the same

space of the patterns. When training a SOM with a given input pattern, the distance

between that pattern and every unit in the network is calculated. Then the algorithm

selects the unit that is closest as the winning unit (also known as best matching unit),

and that pattern is mapped onto that unit. If the SOM has been trained successfully,

then patterns that are close in the input space will be mapped to neurons that are close

(or the same) in the output space. Thus, SOM is ‘topology preserving’ in the sense that

(as far as possible) neighborhoods are preserved through the mapping process.

Before training, the units may be initialized randomly (Kohonen 2001). Typically,

the training is done in two parts. During the first part of training, the units are

‘spread out’, and pulled towards the general area (in the input space) where they will

stay. This is usually called the unfolding phase of training. After this phase, the

general shape of the network in the input space is defined, and we can then proceed

to the fine tuning phase, where we will match the units as best as possible to the

input patterns, thus improving the quality of the mapping provided by the network.

Due to the way we use and initialize the SOM in our application, the first phase

(unfolding) may be omitted.

The quality of the mapping is usually assessed through the use of the quantization

error (Kohonen 2001), which gives the user information on how well the SOM fits

the data. The quantization error is calculated by measuring the distance between

each input pattern and the closest unit, consequently giving a measure of the

distance between the units and the data they are suppose to represent. Thus a low

average quantization error constitutes a criterion for a good result.

The basic SOM learning algorithm may be described as follows:

Let

X be the set of n training patterns x1, x2,…xn

W be a p6q grid of units wij where i and j are their coordinates on that grid

a be the learning rate, assuming values in [0,1], initialized to a given
initial learning rate

r be the radius of the neighborhood function h(wij, wmn, r), initialized
to a given initial radius

Carto-SOM 489
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1. Repeat

2. For k51 to n

3. For all wijgW, calculate dij5Ixk2wijI

4. Select the unit that minimizes dij as the winner wwinner

5. Update each unit wijgW: wij5wij + ah(wwinner, wij, r) Ixk2wijI

6. Decrease the value of a and r

7. Until a reaches 0

The learning rate a, sometimes referred to as g, varies in [0,1] and must converge

to zero so as to guarantee convergence and stability in the training process. The

decrease from the initial value of this parameter to zero is usually done linearly, but
any other function may be used.

The radius, usually denoted by r, indicates the size of the neighborhood around

the winner unit in which the units will be updated. This parameter is particularly

relevant in defining the topology of the SOM, deeply affecting the unfolding of the

output space. Initially r can be as large as the size of the network but, in order to

guarantee convergence and stability, it has to converge to 1 or 0. For the sake of
simplicity, r is sometimes omitted as an explicit parameter of the neighborhood

function. The update of both a and r may be done after each training pattern is

processed (commonly used in online training) or after the whole training set is

processed (commonly used in batch training).

The neighborhood function h, sometimes referred to as L or Nc, assumes values in

[0,1], and is a function of the position of two units (a winner unit, and another unit),

and radius r. It is large for units that are close in the output space, and small (or
zero) for units far away. Usually, it is a function that has a maximum at the centre,

monotonically decreases up to a radius r and is zero from there onwards. The two

most common neighborhood functions are the bell-shaped (Gaussian-like) and the

square (or bubble).

Like in all heuristic methods the parameters that control the training have an

important role in the quality of the SOM final results. Different parameters will lead

to different results, and that is why it is usual practice to perform several runs and
choose the one with the minimum quantization error (Kohonen 2001).

4.1 Building cartograms using SOM

The idea of using an SOM in cartography has already been explored by Skupin

(2003) who uses it as a nonlinear projection tool. Our idea for using SOM to build

cartograms stems from the fact that it can be seen as a density estimation tool

(Sarajedini and Chau 1996, Kohonen 2001, Merenyi et al. 2007).

The properties of the SOM as a density estimation tool have not yet been
completely established, except for some very particular cases, e.g. the one

dimensional case (Ritter and Schulten 1988, Cottrell et al. 1998). In these cases it

has been found that the SOM has a bias towards low density areas, i.e.

Dunits5K*Ddata
m, where K is a constant scaling factor, and m, known as magnification

factor, is 2/3 for some known cases. A magnification effect of 1 would mean strict

proportionality between the density of input patterns and the density of their

assigned units. With a magnification factor of less than 1 low density areas will be

proportionally over represented. Some work has been done to calculate the
magnification factor in more general cases (Dersch and Tavan 1996, Fort 2006,

Merenyi et al. 2007), and experimental evidence suggests that when using the original
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SOM algorithm the magnification factor is always less than one. Some methods have

been proposed to explicitly control the magnification factor (Bauer et al. 1996,

Merenyi et al. 2007), but in this paper we will use the original SOM algorithm.

In spite of the magnification effect, the more input patterns exist in a specific area

of the input space the more units are assigned to represent that specific area.

Additionally, units that represent that area are neighbors in the output space,

consequently they can be labeled with the same label. Thus, if we populate a

particular map with random points, with a density distribution proportional to the

value of the variable of interest, we can train the SOM with that data. We can then

label the units according to the points they are representing and use the output space

as a cartogram. The process can be seen as the folding of a blank sheet (in this case

according to the density of the points that represent the variable of interest) painting

it according to a reference map and finally spreading out the sheet completely thus

obtaining the cartogram. This approach is particularly interesting because we do not

alter the standard training procedure in any way and thus any SOM implementation

may be used to produce cartograms.

In our proposal the cartogram is built based on the unit’s movement during the

learning process of the SOM (Henriques 2006). In essence, during that learning

process, units are moved towards higher density areas. If that movement is recorded,

its inverse will transform the original map into an equal density map.

Figure 2 shows an example of this process, using a simplified instance with only

two regions. The two regions are geographically identical but have distinct values

for the variable of interest, represented by p. The variable p has a high value in the

dark region (i.e. this is a region with a high population density), and a smaller value

in the lighter region. In the following step (Figure 2(b)), we randomly produce points

with a uniform distribution (represented with triangles) inside each region. The

number of points created is a linear function of the value of population p. Figure 2(c)

shows an initialized two-dimensional SOM (with 464 units). The SOM units are

initialized so as to form a regular grid in the input space, contrary to the usual

practice, in which the units are randomly initialized in the input space. We then

continue with a standard SOM training phase where the units adapt to the training

patterns. This means that units are moved (in the input space) in such a way that

their density mimics the density of the data patterns (Figure 2(d)). The algorithm

continues with the labeling process (Figure 2(e)). This process gives each unit a label

based on the data of the region where it lies. In this case, the labels are the colors

that identify each region, and thus each unit will be assigned the color of the region

where it lies after training. Figure 2(f) represents each unit mapped back at its initial

position. Based on the units’ positions and labels a final population cartogram is

produced (Figure 2(h)). In this cartogram the darker region (that had more

population) is larger than the lighter one (that had fewer population), and thus the

final area of the regions is proportional to their population.

Most SOM implementations use rectangular shaped maps such as the one in this

example. Generally, the geographic area of interest is not rectangular, and forcing

the final cartogram to be rectangular, as happens with the described method, is not

acceptable. The root of this problem is that when the SOM is initialized with a

regular grid in a rectangle, some of its units will fall outside the geographic area of

interest, as shown in Figure 3(a).

During training those units will move to areas populated with training patterns

(Figure 3(b)). When comparing the produced cartogram (Figure 3(c)) with the original
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regions shape (Figure 3(a)) it is apparent that the cartogram regions will occupy all the

(rectangular) area on the input space losing the original regions’ shapes.

To address this problem we define three different areas in the input space

(Figure 4). The input space is the domain area (D); the area occupied by the original

regions is the region area (ra) and the remaining area is the buffer area (d).

The input space can now be defined as:

D~razd

As already shown, when no training patterns lie in the buffer area (d) the cartogram

produced will occupy the whole domain area (D) losing the original shape of the region

area (ra). To solve this problem we created and tested several different solutions

presented in detail in Henriques (2006). Among these, the solution that produced the
best cartograms consists in generating data points within the buffer area (d) with a

uniform distribution, and a density equal to the average density of data points in the

Figure 2. Proposed method example.
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whole region of interest (ra). In fact other authors (Tobler 1973, Gastner and Newman

2004) also used a similar technique to obtain good cartograms.

4.2 Compensating for the magnification effect of SOM

Although the proposed algorithm may use the data available without any

preprocessing, the magnification effect of the SOM, described earlier, will distort

the results, producing cartograms where low density areas will be proportionally

overrepresented. In some cases, this may actually be desirable, so as to prevent low

density areas from ‘disappearing’. Nevertheless, we may correct, at least in part, this

effect by boosting the original data, so that low density areas will have even lower

surrogate densities to compensate for the magnification. We can then use this

surrogate dataset instead of the original one. Let us now see in detail how this

dataset may be generated.

For a one-dimensional to one-dimensional mapping, under the special conditions

described by Ritter (1991), the relationship between densities of units and data

points is given by:

Dunits~k1D
m
data

where Dunits is the density of SOM units, Ddata is the density of data points, k1 is a

proportionality constant that results from the ratio between the total number of

units and the total number of data points, and m is the magnification factor.

Figure 4. Input space nomenclature. (a) SOM mapped in the input space. (b) Input space
area definition: ra is the region area, and d is the buffer area.

Figure 3. Rectangular shaped SOM superposed on a non-regular shaped dataset. (a) Random
point creation based on a region feature. (b) SOM units after training. (c) Produced cartogram.
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To build a good cartogram, we want strict proportionality between the density of

units and the density of the original data. To obtain this we must have a surrogate

dataset where the density Dsurr is such that

Dunits~k1Dm
surr~k2DdatauDsurr~

k2

k1

� �1
m

D
1
m

data~k3D
1
m

data

where k3 is (k2/k1)1/m. For the sake of simplicity we will not explicitly calculate each

of the constants kx involved in these calculations, since in the end we will be able to

calculate the necessary variables without them.

Since we will be generating, for each region, a number of points proportional to

the variable of interest V and not its density, we have

Dsurr~k3D
1
m

datau
Vsurr

A
~k3

V
1
m

data

A
1
m

uVsurr~k3
A

A
1
m

V
1
m

data~k3A1{1
mV

1
m

data

where Vsurr is the surrogate variable of interest to be used instead of the variable of

interest Vdata for each region with area A. The number N of data points generated

for each region is proportional to the variable of interest, i.e. N5k4Vsurr. Combining

this with the previous equation we obtain, for each region,

N~k5A1{1
mV

1
m

data

To compute the constant k5 we only need to know how many data points we want

overall Ntotal, since

Ntotal~
X

all Re gions

k5A1{1
mV

1
m

datauk5~
Ntotal

P

all Re gions

A1{1
mV

1
m

data

If the original expression is valid for two-dimensional to two-dimensional mappings,

and we knew the magnification factor exactly, then this correction would allow a

perfectly proportional representation of each region, and thus a null error in the

cartogram. Since that expression is just an approximation, the error will in fact be

greater than 0. As for the magnification factor m, it is reasonable, from empirical

experience, to assume it is approximately 2/3 (Merenyi et al. 2007). The final number

of points for each region i will thus be given by

Ni~kA
1=3
i V

3=2
i and k~

Ntotal
P

i

A
1=3
i V

3=2
i

Since the area outside the region of interest (d) does not have to be faithfully

represented, this correction need not be applied to that region.

4.3 Carto-SOM algorithm

The Carto-SOM algorithm may be defined as follows:

Given a dataset consisting of geographic map M with n regions Ri each with a

geographical area ai and a ‘value of interest’ vi, do the following:

1. Define a rectangle P encompassing all regions Ri.
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2. Define a new region Rn + 15d consisting of all areas within P not covered by

any Ri, and assign it a value of interest vi + 15Svi/Sai6ai + 1, where the sums

are over all other regions. This corresponds to assigning a density for the value

of interest of the area outside the original map equal to the average of the rest
of the map.

3. For each region, generate m5k6ai
1/3vi

3/2 data points with coordinates within

that region, and assign to them a label i that identifies them as belonging to

region Ri. The constant k is equal for all regions and it determines the total

number of data points used. The choice of this number depends on the scale of
the value of interest and the desired quality of the cartograms. Large values of

k will produce smoother cartograms, but will require more processing power.

In practice, k should be chosen so that even the smallest region gets at least 10

points, i.e. given the region j with smallest value of interest and smallest area,

k>10/(aj
1/3vj

3/2). The generated points may have a random uniform

distribution within the region, or may be evenly spaced within that region.

Optionally, this third step may be simplified by generating m5k6vi data

points within each region. This last option assumes that the magnification is 1,
and thus leads to a slightly larger cartogram error, as we shall see later.

4. Generate an initial SOM with x6y units evenly spaced in the geographic

rectangle P. The ratio x/y should be the same as ratio of width to height of

rectangle P, and the larger the value of x the smoother the cartogram will be.

In practice, the value of x should be as high as possible, but taking into

account the processing power available. Depending on the complexity of the
shapes a value of 100 will usually be enough.

5. Train the SOM with the data points obtained in step 3, using the standard

algorithm and ‘standard’ training parameters (in section 5.2. we study more

closely the effects of different training parameters).

6. Label the SOM with the labels of the data points that are mapped to it. It is

possible to do this with the standard SOM labeling routine available in most

SOM software packages. In some rather awkward situations this may produce

a few unlabeled units. While not critical, these units may be labeled using the

reverse labeling process described in the work by Henriques (2006), which

basically consists in assigning to each SOM unit the label of the closest data

pattern.

7. Print out the labels of each unit, using as coordinates each unit’s position in

the SOM (i.e. in the output space). This is the desired cartogram.

Steps 1 to 3 are pre-processing steps that can be performed using any geographic

information system, such as ArcGIS or MapInfo, purpose built Matlab routines

(available at our site), or even a general-purpose program such as Excel.

Steps 4 to 7 may be performed with any SOM software, such as SOMTOOLBOX

for Matlab, SOM-PAK, or SAS Enterprise Miner. However, to obtain the best

results and avoid possible problems with unlabeled units, the routines available for

Matlab at http://www.isegi.unl.pt/labnt/roberto/ should be used.

5. Results

In this section we test the Carto-SOM method using three different datasets. An

analysis of Carto-SOM’s sensitivity to training parameters is performed along with a

comparison with Dougenik and Gastner’s cartograms.
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5.1 Experimental settings

To test the Carto-SOM method we used an artificial dataset, Portugal’s population

data for 2001 and USA’s population data for 2000 (Figure 5).

We chose the Dougenik cartogram method (Dougenik et al. 1985) and the

diffusion method (Gastner and Newman 2004) as benchmarks for the Carto-SOM.

Figure 5. Datasets used to test Carto-SOM: (a) artificial dataset; (b) Portuguese population
for 2001; (c) USA population for 2001.
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The choice of Dougenik’s cartograms was due to the fact that these are quite

popular and the software (to implement them in an ArcGIS environment) is freely

available at http://arcscripts.esri.com/details.asp?dbid514226. The choice of diffu-

sion cartograms was due to the fact that they seem to be the ones that manage to

obtain the best quantitative errors when representing the variable of interest.

To test the Carto-SOM method we trained the SOM using the MATLAB SOM-

Toolbox (Vesanto et al. 2000). Several training processes were performed, changing

the initial SOM parameters. In Table 1 we present the parameters that provided the

best cartograms. In the next section we present the results of the sensitivity analysis

performed based on the USA population dataset.

For Dougenik’s method, we used an ArcGIS script file to produce the cartograms

(Goldschmidt and Passos 2005). This script allows the ArcGIS user to select an

input layer and to choose the number of iterations used. In this test we used five

iterations to produce Dougenik’s cartograms.

For the diffusion cartogram we used an implementation produced by Michael

Gastner available at his homepage (Gastner 2005).

Figure 5. (Continued.)

Table 1. B SOM parameters used as reference in the sensitivity analysis with the USA dataset.*

Row Column r a E

258 388 26 0.1 40

*Row and column are the number of rows and columns used in the SOM; r is the
neighbourhood radius, a is the learning rate, E is the number of epochs used in the training
phase.
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5.2 Sensitivity analysis of Carto-SOM

In order to analyze the sensitivity of the Carto-SOM method we performed several

sets of tests changing in each set one of the parameters. In the first set we test Carto-

SOM’s robustness to initialization and random effects by using the same parameters

in several tests. In the second set we assumed different magnification factors when
boosting the original data, to conclude about the effect of SOM’s magnification

problem in the cartograms. In the third set of tests, which we call the SOM

parameters evaluation, we test changes in the neighborhood radius, learning rate

and the number of epochs. Finally in the fourth set we evaluate influence of the

number of units of the SOM and input data points.

5.2.1 Carto-SOM robustness test. To evaluate the influence of random effects due

to the particular sample of input data points chosen, and the order by which they are

selected and presented to the algorithm, we performed 10 tests. In these tests all

Carto-SOM parameters were maintained except the input data points which were
generated each time (Table 2).

In Figure 6 we present the Keim simple error for each cartogram produced. For

the 10 tests performed we achieved an average error of 4.36% with a standard

deviation of 0.32.

From these results we may conclude that Carto-SOM is quite robust to different

samples of input data points. These tests prove that generating input data points in a

randomly way will not affect the final cartogram provided that the density is

maintained. They also prove that even though Carto-SOM uses a neural network that

may produce slightly different results each time it is used, the differences are negligible.

5.2.2 Magnification effect. In order to evaluate the magnification effect (used

when boosting the original data), we performed several different tests changing the

magnification factor value as shown in Table 3. Test 11, where m51, corresponds to
a proportional input data point generation, i.e. there is no compensation for the

magnification effect.

In Figure 7 the Keim simple error for each of the eleven cartograms produced is

presented. The lowest error is obtained when the value of m is 0.7 (similar to the

Table 2. SOM parameters used to test input data points influence.*

Row Column r a E nD

258 388 26 0.1 40 20 000

*Row and column are the number of rows and columns used in the SOM; r is the neighborhood
radius, a is the learning rate, E is the number of epochs used in the training phase and nD is
the number of input data points used which were randomly generated for each test.

Figure 6. Carto-SOM robustness to the choice of input data points.
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predicted value of 2/3). From this result we conclude that boosting the original data

using the magnification compensation of the input data points produces better

results than using a proportional relation (m51).

5.2.3 SOM parameters evaluation. To test how the Carto-SOM methodology

depends on the SOM parameters we performed a set of tests using different

neighborhood radius r, learning rates a and number of epochs E.

5.2.3.1 Neighborhood radius. In Table 4 we present the 10 tests performed using

different neighborhood radii and maintaining the remaining parameters.

As expected, if the value of neighborhood radius is very small then the SOM will

have more difficulty adjusting to the input data, resulting in cartograms with higher

errors (Figure 8). On the other hand, if we increase the neighborhood radius too

much then the SOM will be less stable and the final results tend to have higher

errors. In the tests performed we achieved an optimum error using a radius of 26

which corresponds to 10% of the number of units in a row.

5.2.3.2 Learning rate. We evaluate the effect of the learning rate by using 10

different values for this parameter while maintaining all the other parameters

(Table 5).

Figure 7. Carto-SOM error as a function of the magnification factor assumed for boosting
original data.

Table 3. Magnification factor (m) variation.*

Test 1 2 3 4 5 6 7 8 9 10 11

m 0.5 0.55 0.6 0.65 0.67 0.7 0.75 0.8 0.85 0.9 1
Keim error 17.43 12.67 8.17 5.01 5.19 4.27 7.01 9.32 11.81 13.75 18.05

*In these tests we used 2586388 units, a neighborhood radius of 26, a learning rate of 0.1, 40
epochs and 20 000 input data points.

Table 4. Variation of the neighborhood radius.*

Test 1 2 3 4 5 6 7 8 9 10

Radius 1 3 5 13 26 52 77 103 129 155
Keim error 36.61 30.76 22.72 4.87 4.55 6.58 6.95 7.97 9.68 11.22

*In these tests we used 2586388 units, a learning rate of 0.1, 40 epochs and 20 000 input data
points.
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In Figure 9 we present the Keim simple error for each cartogram using different

learning rates. Although changing this parameter produces different cartogram errors

these are not relevant and we conclude the learning rate is not a sensitive parameter.

5.2.3.3 Number of epochs. The third parameter tested was the number of epochs

used in the SOM training phase. Again, 10 tests were executed to evaluate the

influence of the number of epochs on the cartogram error (Table 6).

Figure 8. Carto-SOM error as a function of neighborhood radius.

Table 5. Variation on the learning rate.*

Test 1 2 3 4 5 6 7 8 9 10

Learning rate 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Keim error 4.55 5.69 4.5 4.87 5.5 6.59 4.36 4.11 4.86 4.23

*In these tests we used 2586388 units, a neighborhood radius of 26, 40 epochs and 20 000
input data points.

Figure 9. Carto-SOM error as a function of learning rate.

Table 6. Variation on the number of epochs.*

Test 1 2 3 4 5 6 7 8 9 10

Epochs 1 2 5 10 20 25 30 35 40 45
Keim error 33.4 15.9 4.2 3.7 4.6 5.7 4.5 4.9 5.5 6.6

*In these tests we used 2586388 units, a neighborhood radius of 26, a learning rate of 0.1 and
20 000 input data points.
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In the following figure (Figure 10) we present the Keim simple error for the tests

performed. As in the learning rate evaluation, the number of epochs used does not

have a great influence in the final cartogram error, provided that the number of

epochs is greater than five.

5.2.4 SOM dimension parameters. In these experiments we want to test how the

Carto-SOM methodology depends on the SOM dimension parameters, i.e. how does
the number of units and the number of input data points influence the error

obtained in the cartograms.

5.2.4.1 Number of units. In this analysis we want to evaluate the cartogram errors
when using different numbers of units (Table 7). The ratio between the number of

rows and columns is the same as the ratio of the width and height of the original

region of interest. In this case (which refers to the USA) a row/column ratio of 1/1.5

is used.

Figure 11 shows the errors obtained. As we can see there is a number of units

(4988 units) for which the error tends to stabilize. There is reason to believe that the

exact number of units for which the error stabilizes depends on the complexity of the
regions being mapped.

5.2.4.2 Number of input data points. Finally we evaluate the effect of the number
of input data points by performing ten tests using different numbers of input data

points (Table 8).

Figure 12 presents the cartogram error for each test. We did not perform any tests

with less than 8100 data points because we imposed that at least 10 data points should

be generated for each region. If care is not taken to guarantee this, some regions will

Figure 10. Carto-SOM error as a function of the number of epochs used.

Table 7. Variation on the number of units used.*

Test 1 2 3 4 5 6 7 8 9 10

Number of rows 18 26 37 58 82 115 183 258 408 577
Number of

columns
28 38 54 86 122 174 273 388 613 867

Total number of
units

504 988 1998 4988 10 004 20 010 49 959 100 104 250 104 500 259

Keim error 27.16 22.82 13.22 4.65 6.04 5.18 4.61 4.75 4.27 4.97

*In these tests we used a neighborhood radius of 26, a learning rate of 0.1, 40 epochs and
20 000 input data points.
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have a very high error because there simply are not enough data points to represent

them. As long as this is taken into account, as we can see from this figure, the number

of input data points has only a small influence on the cartogram error.

5.3 Comparison between Carto-SOM, Dougenik and diffusion cartograms

In this section we present the final cartograms for the three datasets; an artificial

dataset, Portuguese 2001 population and USA 2000 population. We also compare

the results of the Carto-SOM with the benchmark methods selected.

Figure 13 presents the artificial dataset and the resulting cartograms using the

Carto-SOM, Dougenik and Gastner’s methods. Visually these are good results since

the cartograms represent the variable density by the size of each region while

preserving topology, i.e. all areas have the same neighbors. Furthermore, preserving

important points, such as the junction of all four regions in the center, increases the

cartogram’s recognition.

Figure 11. Carto-SOM error as a function of the number of units.

Table 8. Variation of the number of input data points.*

Test 1 2 3 4 5 6 7 8 9 10

nD 8100 9000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000
Keim error 5.12 4.59 4.30 4.23 3.70 4.42 4.41 4.36 4.69 5.08

*In these tests we used 2586388 units, a neighborhood radius of 26, a learning rate of 0.1 and
40 epochs.

Figure 12. Carto-SOM error as a function of the number of input data points.
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Figure 14 presents Portuguese population cartograms using Carto-SOM,

Dougenik and Gastner’s methods.

In Figure 15 we present the USA 2000 population cartograms using the three

different methodologies: Carto-SOM, Dougenik and Gastner’s.

Figure 13. (a) Original map, (b) Carto-SOM, (c) Dougenik cartogram, and (d) diffusion
cartograms of the artificial dataset.
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Figure 14. Portuguese population cartograms using the Carto-SOM, Dougenik and
diffusion methods: (a) original 2001 Portuguese population map; (b) Carto-SOM; (c)
Dougenik cartogram; (d) diffusion cartogram.
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Through visual analysis of the cartograms produced we can see that Carto-SOM

manages to keep the shapes of individual regions in a way that is generally

comparable to Dougenik and diffusion Cartograms. The Dougenik cartogram has

the disadvantage of performing radial transformations on the shapes of the regions,

making them circular as the number of iterations increases. This is clearly observed

in Portugal, where Lisbon and Oporto appear almost as circles, and to a lesser

extent in the USA where California tends to an egg shape. The diffusion cartogram

also suffers from this bubble effect, albeit to a lesser extent. Because of the same

effect in the Dougenik cartogram, some regions are unevenly squashed, making

Texas look skewed (it looks straight in the Carto-SOM), while Setúbal and

Santarém in Portugal are unevenly distorted by neighboring Lisbon. The Carto-

SOM also manages to keep the overall shape of the cartogram similar to the

geographical map, even though, as we shall see in the next section, the variable of

interest is better represented. Unfortunately, there are some cases in which certain

regions are ‘broken up’ into non-contiguous areas in the cartogram. To minimize

this effect we may increase the number of neurons used, but no definite solution has

been developed for this problem.

In Table 9 we present the cartogram errors calculated for each cartogram

produced. The Carto-SOM performance measured by this error is significantly

better except for the case of Portugal, where it is still quite competitive.

5.4 Related issues

An important factor in cartogram construction is the number of areas used. Several

methods are able to produce good cartograms only if a small number of areas is

used. One of the most famous methods that is capable of using a high number of

objects is Gastner’s diffusion cartograms. Using this method cartograms were built for

Figure 14. (Continued.)
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the population of the countries of the world (approx. 200 objects) and of the USA

counties (approx. 3000 objects). The proposed Carto-SOM method can produce

satisfactory cartograms for such large datasets, as is shown in Figures 16 and 17.

Another issue related with the use of a high number of areas to build a cartogram is

the possibility of using parallel processing. The proposed Carto-SOM method can

make very good use of parallel processing. One of the problems with parallel systems is

Figure 15. USA population cartograms using the Carto-SOM, Dougenik and diffusion
methods: (a) original USA map; (b) Carto-SOM; (c) Dougenik cartogram; (d) diffusion
cartogram.

Table 9. Keim error evaluation using different criteria on the various datasets.

Artificial USA Portugal

se
(%)

mqe
(%)

we
(%)

se
(%)

mqe
(%)

we
(%)

se
(%)

mqe
(%)

we
(%)

Dougenik 14.64 1.83 10.3 16.02 3.08 11.09 12.29 3.80 8.65
Diffusion 22.47 2.72 16.41 5.33 1.45 4.71 1.57 0.46 1.18
Carto-SOM 3.88 2.34 2.47 3.70 0.74 0.65 3.97 1.07 1.29
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that it is sometimes difficult to parallelize the algorithms, i.e. split the algorithm into

different tasks requiring little interaction. Fortunately, the SOM training algorithm is

easily adapted to parallel systems (Ultsch and Siemon 1990, Przytula et al. 1993). We

may even use widely available networked PCs running Windows or Linux to efficiently

train very large SOM’s (Bandeira and Lobo 1998). This will not only allow us to

drastically reduce the processing time but also to increase the number of SOM units

that can be used, thus producing high quality cartograms in a short time.

Figure 16. World countries population cartogram: (a) original world population map; (b)
world population diffusion cartogram; (c) world population Carto-SOM cartogram.
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Figure 17. USA counties population cartogram: (a) original USA counties population; (b)
USA counties diffusion cartogram; (c) USA counties Carto-SOM cartogram.

508 R. Henriques et al.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

N
L

] 
at

 0
6:

29
 2

9 
M

ar
ch

 2
01

2 



6. Conclusions

In this paper we presented a new method for building cartograms, called Carto-

SOM, which is based on the SOM algorithm. To a certain extent this constitutes a

completely different approach for building cartograms. In this case, instead of

developing a new algorithm we make use of the widely available SOM algorithm

and use it to build cartograms.

To evaluate the quality of the cartograms obtained with this method, tests were

performed and assessed, comparing the proposed algorithm with existing ones, both

using quantitative measures and visual inspection. The quantitative measure used

was Keim’s cartogram error. The tests suggest that the cartograms created using the
Carto-SOM are good and accurate representations of the variables of interest.

Visually we conclude that Carto-SOM is an efficient cartogram building algorithm,

usually achieving better results than the Dougenik and Gastner’s method used as

benchmarks.

Finally, it must be emphasized that, using the Carto-SOM method, the only

software necessary to create a cartogram is a standard implementation of the SOM

algorithm. Such implementations are widely available, both in commercial data

analysis programs and public domain packages.
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