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a b s t r a c t

Clustering constitutes one of the most popular and important tasks in data analysis. This is true for any
type of data, and geographic data is no exception. In fact, in geographic knowledge discovery the aim is,
more often than not, to explore and let spatial patterns surface rather than develop predictive models.
The size and dimensionality of the existing and future databases stress the need for efficient and robust
clustering algorithms. This need has been successfully addressed in the context of general-purpose
knowledge discovery. Geographic knowledge discovery, nonetheless can still benefit from better tools,
especially if these tools are able to integrate geographic information and aspatial variables in order to
assist the geographic analyst’s objectives and needs. Typically, the objectives are related with finding spa-
tial patterns based on the interaction between location and aspatial variables. When performing cluster-
based analysis of geographic data, user interaction is essential to understand and explore the emerging
patterns, and the lack of appropriate tools for this task hinders a lot of otherwise very good work.

In this paper, we present the GeoSOM suite as a tool designed to bridge the gap between clustering and
the typical geographic information science objectives and needs. The GeoSOM suite implements the Geo-
SOM algorithm, which changes the traditional Self-Organizing Map algorithm to explicitly take into
account geographic information. We present a case study, based on census data from Lisbon, exploring
the GeoSOM suite features and exemplifying its use in the context of exploratory data analysis.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in database technologies and in data collecting
devices originated a huge growth in the amount of spatial data
available. Processing these amounts of data requires powerful data
mining tools, which form the core of the spatial data mining field.
Spatial data mining can be defined as the discovery of interesting
relationships, spatial patterns and characteristics that may exist
in spatial databases (e.g. Miller & Han, 2001).

One of the most used data mining techniques is clustering. Clus-
tering is a well-established scientific field (Fisher, 1936; Kaufman
& Rousseeuw, 1990) allowing the partition of data into groups of
similar objects. These objects are usually represented as a vector
of measurements or a point in a multidimensional space (Jain,
Murty, & Flynn, 1999). Spatial clustering (Han, 2005) is the parti-
tion of spatial objects into groups so that objects within a cluster
are as similar as possible. Due to spatial dependency, an intrinsic
characteristic of spatial data explained by the 1st law of geography
(Tobler, 1970), clusters are expected to be grouped in space.
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Tobler’s first law (TFL) states that ‘‘everything is related to every-
thing else, but near things are more related than distant things’’.
Although Tobler himself (Tobler, 2004) recognizes the first part
of TFL is not always true (Sui, 2004), correlation is likely to be high-
er at short distances.

In spite of TFL we often see clusters produced from spatial data-
sets which are not spatially contiguous. Some of the known causes
are: (1) the aggregation and the scale of data (Openshaw, 1984);
(2) the spatial heterogeneity (Anselin, 1988); and (3) the multivar-
iate nature of the clustering.

The problems raised by the aggregation and the scale of data are
known as the modifiable areal unit problem (MAUP) (Openshaw,
1984). The problem is that spatial phenomena are normally contin-
uous, but have to be aggregated to obtain a manageable discrete
description. The exact outline of the area over which the description
is obtained will influence critically the perception of the phenom-
ena. Differences in scale will have a similar effect since they also im-
ply a change in the outline.

Spatial heterogeneity is the property that makes each place on
Earth unique due to its specific attributes (Anselin, 1988). This var-
iation implies that standards and design decisions successfully
adopted in one region cannot always be generalized and applied
in other regions (Goodchild, 2008). This uniqueness of each place
makes spatial clustering an even more complex task.
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The third problem with spatial clustering is that different vari-
ables (in a multidimensional problem) may have different levels of
spatial autocorrelation, and thus the global spatial autocorrelation
depends a lot on the relative importance given to each of them.
Even in the case when all variables share a similar global spatial
autocorrelation (O’Sullivan & Unwin, 2002), it is usually space
dependent, and thus the local patterns of this dependency can be
very different.

Nevertheless, many applications require spatially contiguous
clusters that contain regions as homogeneous as possible (within
each cluster), separated from each other by discrete boundaries.
Same examples of these applications are image segmentation
(Awad, Chehdi, & Nasri, 2007), creation of areas for precision farm-
ing (Fleming, Heermann, & Westfall, 2004), estuarine management
areas (Bação, Caeiro, Painho, Goovaerts, & Costa, 2005) and zone
design problems (Bação, Lobo, & Painho, 2005a; Cockings & Martin,
2005; Openshaw, 1977).

Several methods are available for spatial clustering (Guha,
Rastogi, & Shim, 1998; Hu & Sung, 2005; Ng & Jiawei, 2002; Sander,
Ester, Kriegel, & Xu, 1998; Sheikholeslami, Chatterjee, & Zhang,
1998). For a more detailed survey on available methods, the reader
is referred to (Han, Kamber, & Tung, 2001).

However, many of these methods are not aware of spatial
dependence and spatial heterogeneity, assuming that space coordi-
nates are just two (or three) more variables. These methods are
based on general-purpose clustering methods which have limited
capabilities in recognizing spatial patterns that include neighbors
(Guo, Peuquet, & Gahegan, 2003).

GeoSOM, proposed in (Bação, Lobo, & Painho, 2005b; Bação,
Lobo, & Painho, 2008), is an extension of Self-Organizing Maps
(SOM). It is specially oriented towards spatial data mining. As
one of the most known unsupervised artificial neural networks,
SOM has been successfully applied to a wide array of spatial data
(Bação et al., 2008). GeoSOM, while implementing SOM, recognizes
the special inter-relation of spatial dimensions and the importance
of this sub-space in the Geographer’s analyses. GeoSOM takes into
account Tobler’s first Law, searching for clusters within certain
(but adaptable) geographic boundaries instead of global clusters
produced by standard SOM.

This paper extends and consolidates (Bação et al., 2008) in two
major ways. First, a tool called GeoSOM suite is presented, integrat-
ing features of Artificial Intelligence-based clustering with features
of Geographic Information Systems (GISs). This tool implements
the standard SOM and the GeoSOM algorithm with a few improve-
ments providing a friendly and ready to use environment for spatial
data exploration. Some of the improvements on the GeoSOM are: (1)
a tool for cluster outline on a graphical representation of the SOM;
(2) auxiliary tools to help on that outline, such as hierarchical clus-
tering; (3) inclusion of parallel coordinate plots (Inselberg, 1985);
(4) visualization of the mapping of input data combined with the de-
fined clusters; and (5) possibility of viewing multiple SOM, trained
with the same data but different parameters, at the same time. Geo-
SOM suite enables the user to interact with data and combine multi-
ple clustering solutions, thus gathering knowledge about data and
the clusters produced. By providing this exploratory environment
GeoSOM Suite fulfils a gap pointed out by Spielman and Thill
(2008) in which the connection between the SOM and GIS is usually
difficult to achieve, requiring, most of the time, scripting and consid-
erable labor.

Second, this paper assesses GeoSOM suite using Lisbon’s census
dataset, showing that it is a useful exploratory spatial data analysis
(ESDA) and clustering tool.

The paper is organized as follows: Section 2 presents prior work
relevant for this paper. Section 3 reviews the SOM and GeoSOM
methods. In Section 4, two datasets, used to exemplify this tool,
are presented. Section 5 presents GeoSOM suite in detail, and
Section 6 demonstrates a case study using Lisbon Metropolitan
Area (LMA) 2001 census dataset. Finally, Section 7 concludes the
paper and discusses future work.
2. Related work

According to (Guo & Gahegan, 2006), when analyzing geo-refer-
enced data, there are three ways to combine spatial and non-spa-
tial variables. These are: (1) embed the spatial information as
normal variables (and for that they proposed encoding and order-
ing spatial data in a particular way); (2) create new data mining
algorithms that take into account both types of characteristics,
treating spatial variables in a special way; or (3) use multiple views
to visually link patterns across different spaces (spatial and non-
spatial).

Several tools combining exploratory spatial data analysis and
data mining methods have been proposed. One of the oldest tools
is GeoMiner (Han, Koperski, & Stefanovic, 1997), which is based on
a relational data mining system known as DbMiner (Han, Cai, &
Cercone, 1993). GeoMiner proposed a new language (geographic
mining query language) to define characteristic rules, comparison
rules and association rules. Another characteristic of this system
is the integration of data mining, data warehousing technologies
and geographic information systems, presenting various outputs,
such as maps, tables and charts.

(Maceachren, Wachowicz, Edsall, Haug, & Masters, 1999) pro-
posed the GKConstruck, allowing the integration of knowledge dis-
covery in databases (KDD) and geographic visualization (GVis), with
spatiotemporal environmental data. The authors proposed a proto-
type capable of presenting three dynamically linked representation
forms: the geographic map, 3D scatter plots and parallel coordinate
plots. These three linked windows allow spatial data exploration
through dynamic brushing, focusing and color manipulation.

Another tool for spatial data analysis and visualization is GeoVi-
sta Studio (Takatsuka & Gahegan, 2002). In this tool, the user is
able to build his own exploratory methods by visual programming.
Dynamically linked visual representations such as maps, scatter
plots and parallel coordinate visualizations are used for explora-
tion and analysis.

Anselin proposed the GeoDA tool (Anselin, Syabri, & Kho, 2006),
including histograms, box plots, scatter plots, choropleth maps,
global and local indicators of spatial association (LISA) (Anselin,
1993) and spatial regression. This tool also makes use of dynami-
cally linked windows, combining maps with statistical plotting.

In a recent paper, Mu (Mu & Wang, 2008) proposed a scale-
space clustering method for spatial data. This method produces
several clustering sets for different scales just like in hierarchical
clustering. At the top of the hierarchy there is only one cluster,
and at the base the number of clusters is equal to the number of
data objects. The method starts by calculating aggregation scores
based on the characteristics of each object and its neighbors.
These scores allow the creation of directional links, which en-
ables the definition of local minima and maxima: local minima
are objects with all directional links pointing towards other ob-
jects while local maxima are objects with all directional links
pointing towards itself. In the next phase, the method groups
objects iteratively, from local minima to local maxima, according
to the directional links. This method has, amongst others, the
advantage of producing clusters that are always spatially
contiguous.

Self-Organizing Maps (SOM) have been used more and more in
geospatial problems, and a good overview of these is presented in
(Agarwal & Skupin, 2008). Openshaw was one of the first well-
known geographers to point out the applicability of SOM in geog-
raphy, namely for clustering (Openshaw & Wymer, 1995). Other



Table 1
Squareville uniformly distributed attributes.

Variable 35 < x < 65 0 < x<34 and 66 < x < 100

Average salary [0, 100] [900, 1000]
Number of children [0, 3] [1, 5]
Education level [4, 18] [0, 9]
Number of residents [2, 5] [2, 7]
Number of rooms [1, 5] [0, 3]

Fig. 1. Squareville house’s spatial distribution (the bar chart position represent the
geographic coordinates while its bars represent the non-spatial variables).
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geospatial clustering applications of SOM include (Céréghino,
Santoul, Compin, & Mastrorillo, 2005; Koua & Kraak, 2004;
Spielman & Thill, 2008). In (Allouche & Moulin, 2005) and (Sester,
2005) SOMs are used for cartographic generalization. SOMs have
also been used as supervised classification tools for geospatial
problems, for example in (Mather, Tso, & Koch, 1998; Merenyi, Jain,
& Villmann, 2007; Wan & Fraser, 1993). In (Spielman & Thill, 2008)
SOM are used for data reduction, allowing the detection of spatial
patterns in a socio-demographic analysis of New York City census
data. Similar uses include the analysis of airline passenger
flows (Yan & Thill, 2008) and linguistic variations (Thill, W.A.
Kretzschmar Jr., & X. Yao, 2008).

3. Outline of SOM

Teuvo Kohonen proposed the Self-Organizing Maps (SOM) in
the beginning of the 1980s (Kohonen, 1982). The SOM is usually
used for mapping high-dimensional data into one, two, or three-
dimensional feature maps. The basic idea of an SOM is to map
the data patterns onto an n-dimensional grid of units or neurons.
That grid forms what is known as the output space, as opposed
to the input space that is the original space of the data patterns.
This mapping tries to preserve topological relations, i.e. patterns
that are close in the input space will be mapped to units that are
close in the output space, and vice versa. The output space will usu-
ally be two-dimensional, and most of the implementations of SOM
use a rectangular grid of units. To provide even distances between
the units in the output space, hexagonal grids are sometimes used
(Kohonen, 2001). Each unit, being an input layer unit, has as many
weights as the input patterns, and can thus be regarded as a vector
in the same space of the patterns. When training an SOM with a gi-
ven input pattern, the distance between that pattern and every
unit in the network is calculated. While several distance metrics
can be used (Kohonen, 2001; Sneath & Sokal, 1973), Euclidean dis-
tance is the most common, Then the algorithm selects the unit that
is closest as the winning unit (also known as best matching unit-
BMU), and that pattern is mapped onto that unit. In a successfully
trained SOM patterns that are close in the input space will be
mapped to units that are close (or the same) in the output space.
Thus, SOM is ‘topology preserving’ in the sense that (as far as pos-
sible) neighborhoods are preserved through the mapping process.

The basic SOM learning algorithm may be described as follows:

Let
X be the set of n training patterns x1,x2, . . .,xn

W be a p � q grid of units wij where i and j are their
coordinates on that grid

a be the learning rate, assuming values in ]0,1[, initialized to a
given initial learning rate

r be the radius of the neighborhood function h(wij,wmn,r),
initialized to a given initial radius

1 Repeat
2 For m = 1 to n
3 For all wij 2W,
4 Calculate dij = ||xm �wij||
5 Select the unit that minimizes dij as the winner wwinner

6 Update each unit wij 2W: wij = wij + a
h(wwinner,wij,r)||xm �wij||

7 Decrease the value of a and r
8 Until a reaches 0

The learning rate a, sometimes referred to as g, varies in [0,1]

and must converge to 0 to guarantee convergence and stability in
the training process. The decrease of this parameter to 0 is usually
done linearly, but any other function may be used. The radius, usu-
ally denoted by r, indicates the size of the neighborhood around
the winner unit in which units will be updated. This parameter is
relevant in defining the topology of the SOM, deeply affecting the
output space unfolding.

The neighborhood function h, sometimes referred to as K or Nc,
assumes values in [0,1], and is a function of the position of two
units (a winner unit, and another unit), and radius, r. It is large
for units that are close in the output space, and small (or 0) for far-
away units.
3.1. GeoSOM

GeoSOM is an adaptation of SOM to consider the spatial nature
of data. In GeoSOM, the search for the best matching unit (BMU)
has two phases. The first phase settles the geographical neighbor-
hood where it is admissible to search for the BMU, and the sec-
ond phase performs the final search using the other
components. A parameter k controls the search neighborhood de-
fined in the output space. The purpose of this k parameter, and
the choice of its value for a given problem is discussed in detail
in (Bação, Lobo, & Painho, 2004). The general idea is that instead
of defining a fixed geographical neighborhood radius where clus-
tering is admissible, that neighborhood is indirectly defined by
fixing a neighborhood in the output space. In areas where data
density is high, a given k-radius in the output space will represent
a rather small geographic neighborhood, meaning that we will
only allow clustering of data that are quite close by. On the con-
trary, in areas with low data density the same given k-radius in
the output space will lead to large geographical neighborhoods,
meaning that we will allow clustering of geographically more dis-
tant data. Using k = 0 will necessarily select as BMU the unit geo-
graphically closer. The same result may be obtained by training a
standard SOM with only the geographical locations, and then



Fig. 2. GeoSOM suite architecture.

Fig. 3. GeoSOM suite window. From the left to the right, top to bottom: GeoSOM suite main window (a) with a tree-list of available analysis, and the full dataset with all
attributes; U-matrix (b) obtained using census data; geographic map (c) of Lisbon Metropolitan Area; and a boxplot (d) showing the distribution of two variables.
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using each unit as a low pass filter (i.e. a sort of average) of the
non-geographic features. As k (the geographic tolerance) in-
creases, the unit locations will no longer be quasi-proportional
to the locations of the training patterns, and the ‘‘equivalent fil-
ter’’ functions of the units will become more and more skewed,
eventually ceasing to be useful as models.
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Setting k equal to the size of the SOM is equivalent to treat spa-
tial coordinates as any other variable.

Formally, the GeoSOM may be described by the following
algorithm:

Let
X be the set of n training patterns x1,x2, . . .,xn, each of these

having a set of geospatial components geoi and another set
of non-geospatial components ngfi.

W be a p � q grid of units wij where i and j are their
coordinates on that grid, and each of these units having a
set of geospatial components wgeoij and another set of non-
geospatial components wngfij, wij = [wgeoij wngfij].

a be the learning rate, assuming values in ]0,1[, initialized to a
given initial learning rate

r be the radius of the neighborhood function h(wij,wmn,r),
initialized to a given initial radius

k be the radius of the geographical BMU that is to be searched
1 Repeat
2 For m = 1 to n
3 For all wij 2W,
4 Calculate dij = ||wgeom �wgeoij||
5 Select the unit that minimizes dij as the geowinner

wBMUgeo

6 Select a set WBMU of wij such that the distance in the grid
between wBMUgeo and wij is smaller or equal to k.

7 For all wij 2WBMU,
8 Calculate dij = ||xm �wij||
9 Select the unit that minimizes dij as the winner wBMU

10 Update each unit wij 2W: wij = wij + ah(wBMU,wij,r)
||xm �wij||

11 Decrease the value of a and r
12 Until a reaches 0
4. Example datasets used in this paper

In this paper, we use two different datasets to illustrate the use
of the GeoSOM suite. The first dataset (Squareville) is a fictional
example (Lobo, Bação, & Henriques, 2009), consisting of data
points with two spatial variables (the x–y coordinates) and five
non-spatial variable. The second dataset is taken from the Lisbon
Metropolitan Area (LMA) census for 2001, and it is used for a more
detailed case study presented at the end of the paper.

4.1. Squareville dataset

Squareville is a fictional dataset benchmark used in spatial clus-
tering problems. Squareville is a small town with square bound-
aries and 10,000 m2 of area. Squareville has 100 houses evenly
spaced with coordinates x 2 [5, 95] and y 2 [5, 95]. For each house
we know five attributes: the average salary of its residents, the
number of children, the education level, the number of residents
and the number of rooms. Table 1 presents the value intervals used
for each variable and within those intervals the variables haven a
uniform distribution.

Fig. 1 shows the houses’ distribution and the value for each
attribute along Squareville.

We could consider a case where only non-spatial attributes are
used, i.e., where we perform a traditional, non-spatial, clustering of
the data. There is, of course, a continuum between this situation
and the case where only spatial attributes exist, i.e., where non-
spatial variables are negligible. In this latter case, any clusters arise
simply from geographical proximity. In this paper, we do not wish
to discuss this problem in detail, but there is no universally opti-
mum way to weigh spatial and non-spatial variables, as we go from
pure attribute clustering to spatial clustering. Our objective is to
consider situations where the main focus is on non-spatial vari-
ables, but these must be considered in their geographical context.
We will use this dataset when explaining how to use GeoSOM
Suite.
5. GeoSOM suite tool

The GeoSOM suite is implemented in Matlab� and uses the
public domain SOM toolbox (Vesanto, Himberg, Alhoniemi, &
Parhankangas, 1999). Basically, it consists of a number of Matlab
routines (m-files). A stand-alone graphical user interface (GUI)
was built, allowing non-programming users to evaluate the SOM
and GeoSOM algorithms, and explore them with basic GIS tools.
The GeoSOM suite is freely available at www.isegi.unl.pt/labnt/
geosom. Fig. 2 shows the general GeoSOM suite architecture that
consists of: (1) access to spatial and non-spatial data; (2) Matlab
runtime components, SOM toolbox and GeoSOM routines; (3) a
graphical user interface (GUI) and; (4) the routines that produce
the output views. These views consist of geographic maps, U-
matrices, component planes, the hit-map plots and parallel coordi-
nate plots, which will be explained later. The GeoSOM suite allows
multiple analyses to be shown at the same time. For example, one
may use several different SOMs and GeoSOMs on the same dataset,
and visually compare the results.

Fig. 3 presents a screen-shot of the GeoSOM suite tool. The main
window contains a table of attributes and a tree view pointing to
all the views created. The figure also shows three examples of
views: a geographic data, a U-matrix and a box plot views.

The GeoSOM suite’s main functionalities are: (1) present spatial
data; (2) train a self-organized map using the standard SOM or the
GeoSOM algorithm; (3) produce several representations (views)
and (4) establish dynamic links between windows, allowing an
interactive exploration of the data.
5.1. Views

Views are different representations of data allowing the user to
analyze it from different perspectives, making interpretation eas-
ier. Presently, GeoSOM suite includes the following views:

� Geographic map
� U-matrices
� Component plane plots
� Hit-map plots
� Parallel coordinate plots
� Boxplots and histograms

U-matrices (Ultsch & Siemon, 1990) are calculated by finding
the distances in the input space of neighboring units in the output
space. The most common way to visualize them is to use a color
scheme or a gray scale to represent these distances. In this case,
black represents the highest value while white represents the low-
est value (Fig. 4e). Low values in the U-matrix (shown as white
areas) are an indication that data density is high, thus there is a
cluster of data. High values in the U-matrix (shown as dark areas),
are an indication that data density is low, thus there is a separation
between clusters.

Component planes (Kohonen, 2001) are another SOM represen-
tation where each unit gets a color based on the weight of each
variable used in the analysis. A component plane exists for each
variable showing the units’ weights for that variable (Fig. 4b). By
observing the component planes one can see how a given variable
varies along the map. This may be useful, for example, to under-
stand what characterizes each cluster. By comparing two or more

http://www.isegi.unl.pt/labnt/geosom
http://www.isegi.unl.pt/labnt/geosom


Fig. 5. Defining clusters from a standard SOM trained with Squareville data (a). In the figure, six clusters are delimited by the user on top of the U-matrix (b) produced from
the SOM. The boxplot (c), the geographic map (d) and the average salary plane (e) are also presented showing the clusters.

Fig. 4. Dynamically linked views created by GeoSOM suite (selection made in the U-matrix is in red): (a) GeoSOM suite main interface, with a tabular view of the dataset; (b)
the average salary component plane; (c)the geographic map ; (d) parallel coordinate plot of all the data; (e) the U-matrix and (f) boxplot view of the seven variables.
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Fig. 6. Defining clusters from GeoSOM method trained with Squareville data (a). In the figure, three clusters (represented by red, green and blue) are delimited by the user on
top of the U-matrix (b) produced from the SOM. The boxplot (c), the geographic map (d) and the average salary plane (e) are also presented showing the clusters.
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component planes, one can visually identify correlations between
variables, both globally and at a local scale.

Another possible view in the GeoSOM suite is the hit-map plot
(Kohonen, 2001). This representation is usually superimposed on
the U-matrix or on the component planes, and gives information
about the number of data items represented by each unit, i.e. data
items with the same BMU (Fig. 4b and e, red1 hexagons). It can be
used to see how a certain set of data points are mapped on the
SOM, gaining more information about the clustering structure.

A parallel coordinate plot (Inselberg, 1985) is a data analysis
technique for plotting multivariate data. This technique starts by
drawing a set of parallel axis, one for each variable. A line connect-
ing a given value on each variable axis will then map each data
item (Fig. 4d). This allows us to visually compare multivariate data
vectors.

Other possible representations in GeoSOM suite are the box-
plots (also known as box plots, or box-and-whisker diagrams)
and histograms (Fig. 4f). Boxplots are 2-dimensional graphics dis-
playing several statistics for each variable (the smallest observa-
tion of a given variable, the lower quartile, the median, the upper
quartile, the largest observation and the outliers). Besides the box-
plot it is possible to plot the histogram, which is a graphical display
of tabulated frequencies, shown as bars. Fig. 4 shows some views
created by GeoSOM suite using the Squareville dataset. In this
example, we trained an SOM with 10 � 10 units. Also in this figure,
it is possible to notice the dynamically linked property of the views
allowing the brushing of data items through different views.

The use of dynamically linked windows promotes interaction
with the data, allowing users to analyze data from different
1 For interpretation of color in Figs. 2–9 and 11–16, the reader is referred to the
web version of this article.
perspectives. Observing the U-matrix (Fig. 4e) the first thing that
emerges is that on the right hand-side we have a lighter area sep-
arated from the rest by a vertical dark region. This means that the
units in this area form a cluster. Observing the component plane
(Fig. 4b) we can confirm that the right hand-side cluster corre-
sponds to low income houses. A closer inspection of the left
hand-side area on the U-matrix would lead to it being divided into
a upper part corresponding to houses from the East side and a
lower part corresponding to houses on the West side. However this
more detailed distinction is not very clear from the U-matrix.
Selecting all units belonging to one of the clusters we are implicitly
selecting a subset of the original data, and that data will be
highlighted in all other views. Thus, when analyzing the salary
component plane it is possible to find that the units selected on
the U-matrix correspond to the lowest value of average salary. This
is reinforced by inspecting the parallel coordinate plot, where low
average salary houses are selected. Finally, in the geographic map,
it is possible to view the spatial distribution of the houses with a
lower average salary.

5.2. Clustering in GeoSOM suite

Clustering with SOM can be made using ‘‘k-means’’ SOM (Bação,
Lobo, & Painho, 2005c) or ‘‘emergent’’ SOM (Ultsch, 2005). The dis-
tinction between these two approaches, which vary only in the
number of units used, is not very common amongst the geospatial
community, but is detailed in (Behnisch & Ultsch, 2008; Ultsch,
2005). In a ‘‘k-means’’ SOM, each unit is a cluster centroid (thus
the process is similar to k-means clustering, hence the name),
while in emergent SOM each cluster is composed of a large number
of units, and identified by the borders on a U-Matrix. GeoSOM suite
allows the users to use both methods for clustering. While ‘‘k-
means’’ clustering does not require any special tool (each unit is



Fig. 7. Comparison between SOM and GeoSOM clustering. GeoSOM has the capability of detecting spatial contiguous clusters. The selection in red shows one region with high
average salary in the west part of the map. (a) Main GeoSOM window; (b) U-matrix produced from a standard SOM; (c) boxplot; (d) U-Matrix produced from GeoSOM; and (e)
geographic map.

Fig. 8. Lisbon metropolitan area enumeration districts.
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one cluster), to use ‘‘emergent’’ SOM clustering GeoSOM suite al-
lows the user to delineate the clusters on top of U-matrices. To
help users outline clusters, two extra tools are available in GeoSOM
suite: a hierarchical clustering of units and what we call a z-level
tool. In the first case, we cluster the units based on distance and
position (on the U-matrix) using a hierarchical algorithm (single-
linkage), and label each unit on the U-matrix. The z-level tool is a
simple query on the U-matrix that highlights all units that are be-
low a certain threshold. If we consider the U-matrix in three
dimensions (assuming as third dimension the distance between
units) high-density areas correspond to valleys while low-density
areas correspond to mountains. Thus, clusters match valley zones
while mountains are cluster frontiers. After defining clusters on
top U-matrices, it is possible to see them on all open views (Fig. 5).

Fig. 5 shows a possible cluster configuration using the Square-
ville dataset. From the clusters’ outline that is manually drawn
on top of the U-matrix it is possible to analyze the clusters on
the salary component plane, on the geographic map and on the
parallel coordinate plot.

5.3. Clustering spatial data

As shown before, the standard SOM algorithm allows the detec-
tion of several clusters in the Squareville dataset. However, there is
no unquestionable cluster arrangement and solutions using two,
three or six clusters are possible.

A visual inspection of the variables distribution in the geo-
graphic map will suggest us three clusters. However, because in
this example SOM is giving the same weight to each variable, spa-
tial variables have proportionally less weight than the non-spatial
variables (spatial variables are the x and y coordinates versus five
non-spatial variables). Thus, in the U-matrix presented in Fig. 5,
SOM is capturing the differences between the non-spatial variables
which makes the clustering structure less clear.

At this point, a reasonable doubt can arise: if SOM does not
detect the three clear-cut clusters due to the low weight of spatial
variables, why not increase their weight? The answer to this



Table 2
Variables used in the cluster analysis of LMA census.

Category Variable name Description

Age of the buildings E1945 % of buildings built before 1945
E1970 % of buildings built between 1946 and 1970
E1980 % of buildings built between 1971 and 1980
E1990 % of buildings built between 1981 and 1990
E2001 % of buildings built between 1991 and 2001

Age of residents Id0_13 % of residents with age bellow 13
Id14_19 % of residents with age between 14 and 19
Id_19_24 % of residents with age between 20 and 24
Id_25_64 % of residents with age between 25 and 64
Id_65 % of residents with more than 65 years of age

Residents’ level of education Ens0 % of resident with no formal education
EnsBas1 % of resident with 4 years of education
EnsBas23 % of resident with 6–8 years of education
EnsSec % of resident with 12 years of education
EnsSup % of resident with higher education

Residents attending school EstBas1 % of students attending years 1–4
EstBas2 % of students attending years 5–6
EstBas3 % of students attending years 7–9
EstSec % of students attending years 10–12
EstSup % of students attending University

Sector of economy Sect1 % of residents working in the primary sector
Sect2 % of residents working in the secondary sector
Sect3 % of residents working in the tertiary sector
PensRef % of retired residents
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question is that by increasing the importance of the spatial vari-
ables we will be decreasing the importance of the other variables,
and thus blur the distinction between clusters defined by those
variables. The clear distinction between clusters will fade away
as the importance of the variables that define them decreases.
Fig. 9. U-matrix (a) for Lisbon Metropolitan Area SOM and box plot (b) sh
In the limit, if only spatial variables are used, no clusters whatso-
ever will emerge since in this case spatial variables vary uni-
formly. It is not easy to find a point along this process where
the clusters that arise are spatially continuous, but defined by
non-spatial variables.
owing the outliers (red features both in U-matrix and in the boxplot).



Fig. 10. U-matrix (a) and component planes (b) for Lisbon Metropolitan Area
dataset after exclusion of the outliers. The top row of component planes refers to
the age of the building. The next row refers to the age of the residents, the third one
the student status, the forth the achieved education levels, and the last the
employment sector.
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To include spatial data and ensure the clusters’ contiguity we
apply the GeoSOM algorithm (Fig. 6).

In this case, three clusters are clearly detected (green, blue and
red) matching the two spatially apart regions with high average
salary and the middle one with a small average salary.
5.4. Combining multiple clustering solutions in GeoSOM suite

Another analysis possible with GeoSOM suite is to train several
SOM or GeoSOM using the same dataset. This possibility has differ-
ent applications. First, it allows the comparison between the ‘‘k-
means’’ and ‘‘emergent’’ SOM clustering methods using the same
dataset. Therefore, the user can compare the clusters produced
Fig. 11. U-matrix with outlines of some component planes hotspots. Areas of the compon
of variables) on top of the U-matrix. There are two areas where age (in green) plays a pr
lower left an area with infants (under 13 years of age). There are three areas where educ
middle bottom, there are many people with tertiary education. Finally there are 5 areas (
many old buildings (built before 1945), in the bottom right buildings built before the 70
bottom left the 90s.
using a predefined number of clusters with those obtained by
searching for ‘‘natural’’ clusters.

This feature also allows a sensitivity analysis of SOM and Geo-
SOM by comparing results using different input parameters. Com-
parisons between SOM and GeoSOM algorithms in clustering can
also be performed. Using multiple clustering options at the same
time will give the user a better insight on the nature of the data.
Using the two examples shown before (Figs. 5 and 6), it is possible
to compare the SOM and GeoSOM results (Fig. 7), and thus under-
stand the geographical separation of the high income cluster.

Finally, the user might choose to make several SOM’s using
different subsets of variables. This can be thought of as building
different thematic classifications. For the census dataset that we
will analyze later, for example, one may separately use building
characteristics, family characteristics, or unemployment character-
istics, which can, in the end, be evaluated together.

Fig. 7 shows the comparison between the SOM and the GeoSOM
U-matrices. The difference in clarity between the SOM U-matrix
and GeoSOM U-matrix (Fig. 8b and d) is striking. In both we can
identify three clusters but they are far more pronounced in the
GeoSOM than in the SOM. Selecting one cluster in the GeoSOM
U-matrix (an area with a high salary), it is possible to analyze
the cluster distribution on the previously trained SOM.
6. Case study: Lisbon’s census

To evaluate GeoSOM suite with real data we performed a clus-
ter analysis using Lisbon’s Metropolitan Area (LMA) 2001 census,
obtained from the Portuguese statistical institute (Statistics Portu-
gal). The data is aggregated by 3978 enumeration districts (ED) (se-
cções estatisticas in Portuguese) and describes buildings, families,
households, age, education levels and economic activities using
more than 65 variables. An ESRI™ shapefile with the ED’s spatial
outline and attributes is used as starting point in the GeoSOM
suite. One may also use other file type, such as .csv or .mat files,
but in that case the geographical map will not be produced.
Fig. 8 presents a map with LMA delineation and relative location
within Portugal.

Table 2 describes the variables used in the cluster analysis.
We started by training a 20 � 10 SOM using all enumeration

districts (ED). Fig. 9 shows the U-matrix produced and a boxplot
for all the variables. Next, we identified outliers by searching for
high values in the U-matrix. As can be seen, in this case, the U-ma-
trix has a very dark area (corresponding to very low density of
data) at the top. The data that is mapped to this area are clearly
ent planes that have high values are shown with colors (one for each thematic group
edominant role: on the right there is an area with many people over 65, and on the
ation level (in blue) plays a predominant role: on the extreme right, upper left, and
in red) where buildings have a well-defined age structure: in the top right there are
s, in the top left, buildings of the 70s, in the middle-left bottom the 80s, and in the



Fig. 12. Component planes for the variables Id65 (a), E1945 (b) and E1970 (c) and Lisbon map (d) showing the selection of the units with higher percentage of oldest people.
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outliers, and the values of the variables that characterize them are
superimposed on the boxplot, as red lines. As we can see in the
boxplot these outliers (represented by the red lines) refer to ED
where most variables are null or deserted areas where a single
Fig. 13. U-matrix (a) and parallel coordinate plot (b) and Lisbon Metropolitan Area map
in red. From the previous figure we conclude that the ‘‘old buildings’’ cluster formed by SO
centers (Lisbon, Cascais, Oeiras Almada and Setubal).
house can skew the results significantly. These ED were removed
from the original dataset, so that a better understanding of the
remaining ED can be achieved. This process of removing outliers
before proceeding with the analysis is quite common, since the
(c) with the highest percentage of buildings built before 1945’ enumeration districts
M is spatially distributed along Lisbon Metropolitan Area, matching the oldest town



Fig. 14. U-matrix obtained with GeoSOM for Lisbon Metropolitan Area dataset after exclusion of the outliers. The original cluster of old buildings detected by the standard
SOM is mapped to the red units.

Fig. 15. Oldest buildings cluster selected on the ED1945 component plane (a) and on the U-matrix (b).
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outliers will usually ‘‘squash’’ the rest of the data, thus hiding the
general structure of the dataset.

After removing those outliers a new SOM was trained with the
remaining ED. Again, for this training set, a 20 � 10 SOM was used.
Fig. 10 shows the U-matrix produced and the component planes
for all the variables used.

A detailed cross analysis between the U-matrix and the compo-
nent planes reveals that the age of the buildings is the factor that
better defines clear clusters, and thus may be dubbed more ‘‘clus-
terable’’. This means that these variables present natural clusters
that are easily detected by SOM. Concerning the age of residents
it is possible to conclude that young people (<13 years old) are
more associated with ‘‘newer’’ areas (buildings built after the
90s) while older people (>65 years old) are found in areas with
buildings built before 1970. As expected the number of students
is highly related with the age of residents. Fig. 11 shows the U-ma-
trix emphasizing units with high values for residents’ age, build-
ings age and education related variables.

Fig. 12 shows the component planes for the variables Id65 (res-
idents with more than 65 years of age), E1945 and E1970 (build-
ings built before 1940 and between 1940 and 1970, respectively).
Selecting the units with higher values for the variable Id65 it is
possible, due to dynamically linked windows of GeoSOM suite, to
verify the corresponding selection on the E1945 and E1970 compo-
nent planes. On the two last component planes the size of the red
hexagons represent the number of ED selected. It is possible to
conclude that ED with eldest people are highly related with those
with buildings built before 1945 or before 1970. The spatial distri-
bution of these ED is also shown in Fig. 12. The ED with higher per-
centages of older people are located mostly in the center of Lisbon.

In the following figure (Fig. 13) the cluster representing the
highest percentage of buildings built before 1945 is selected on
the U-matrix. In the same figure a box plot characterizing this clus-
ter and its spatial distribution is shown.

From the previous figure we conclude that the ‘‘old buildings’’
cluster formed by SOM is spatially distributed along Lisbon
Metropolitan Area, matching the oldest town centers (Lisbon,
Cascais, Oeiras Almada and Setubal).

However, depending on the final objective, the creation of spa-
tially homogeneous clusters can be an important goal in the cluster
analysis. If, for example, we wanted to decide where an historical
buildings visitor center should be located, we would like to select
a cluster of old buildings that are spatially close to each other.
The clusters are thus formed not only by the age dimension (age
of the buildings) but also by their spatial location. To obtain these
spatially homogenous clusters we applied the GeoSOM algorithm.
A 20 � 10 GeoSOM was trained and the U-matrix produced is
shown in Fig. 14.

On this U-matrix we selected (red hexagons) the ‘‘old buildings’’
that belong to the cluster detected by the standard SOM. The high-
lighted GeoSOM units corroborate the fact that this cluster is not
spatially contiguous. In other words, since the GeoSOM U-matrix
represents the distances between its units, and this distance takes
into account the attributes and geographic distances, spatial homo-
geneous clusters are represented by units close to each other in the
U-matrix. Fig. 15 shows the ED1945 component plane for the Geo-
SOM where high value units are selected in red. Corresponding fea-
tures are also selected on the U-matrix produced from GeoSOM.

In Fig. 16, clusters were delineated on top of the U-matrix pro-
duced from the GeoSOM. From this partition, ED were colored on
the map according to the respective cluster. A parallel coordinate
plot is also shown, characterizing the units belonging to each
cluster.

Analysing Lisbon Metropolitan Area 2001 census we may con-
clude that:

� Young people (<13 years old) are associated with ‘‘newer’’ areas
(buildings built after the 90s), while older people (>65 years)
are found in areas with buildings built before 1970.
� ED with eldest people are located throughout all LMA, but with

special focus near Lisbon’s center and centers of old villages
such as Sintra, Cascais, Oeiras, Almada and Setubal.



Fig. 16. Clusters created for Lisbon Metropolitan Area presented in the: (a) U-matrix; (b) parallel coordinate plot of units and (c)Lisbon Metropolitan Area map.
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� SOM and GeoSOM produce different clusters: while SOM groups
ED with similar characteristics albeit quite far from each other,
GeoSOM groups nearby ED with similar characteristics.
� Using GeoSOM it is possible to create regions with similar attri-

butes and high spatial autocorrelation (corresponding to Geo-
SOM clusters), but it is also possible to detect regions where
the spatial autocorrelation is low (corresponding to areas out-
side the clearly defined clusters).

7. Conclusions

In this paper, we presented GeoSOM suite as a new and efficient
tool for exploratory spatial data analysis (ESDA) and clustering. This
tool implements two major methods, the standard SOM (Kohonen,
2001) and the GeoSOM (Bação et al., 2008). The SOM is a well-known
algorithm that has proved to be of interest in spatial clustering. The
GeoSOM, by explicitly considering spatial autocorrelation, is able to
detect spatial homogeneous and heterogeneous areas. These heter-
ogeneous areas are regions where, although spatial attributes are re-
lated (data points are close to each other) non-spatial attributes have
little correlation.

GeoSOM suite implements several visualization features, all
dynamically linked, allowing a strong interaction between user
and data, and thus an improved understanding of the data ana-
lyzed. It is also possible to compare both methods through several
views such as U-matrices, component planes, parallel coordinate
plots, etc.

Spatial clusters were produced from Lisbon Metropolitan Area
2001 census dataset using the SOM and GeoSOM methods avail-
able in GeoSOM suite. Four main conclusions were drawn from this
analysis as explained in the previous section.

The main conclusion is that GeoSOM suite not only is easy to
use (it has been used extensively by our students), but provides a
wide range of powerful tools that enable the user to detect
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patterns that are hard to find using other methods. It constitutes a
useful environment for exploratory geospatial analysis, even if the
particularities of the GeoSOM algorithm are not used. A second
important conclusion is that, as suggested in earlier papers, Geo-
SOM in real world problems does produce clusters that, while de-
fined by non-spatial attributes, are geographically compact.

Future research will focus on evaluating the performance of
GeoSOM with factors such as scale, zoning and time. In addition,
some research will be done on using GeoSOM to detect clusters
in different thematic areas and to produce general clusters based
on these ‘‘lower level’’ clusters.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.compenvurbsys.2011.11.003.
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