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Abstract

In this paper we explore the advantages of using Self-Organized Maps (SOMs) when dealing with geo-referenced

data. The standard SOM algorithm is presented, together with variants which are relevant in the context of the analysis

of geo-referenced data. We present a new SOM architecture, the Geo-SOM, which was especially designed to take into

account spatial dependency. The strengths and weaknesses of the different variants proposed are shown through a set of

tests based on artificial data. A real world application of these techniques is given through the analysis of

geodemographic data from Lisbon’s metropolitan area.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The sophistication of today’s geo-referenced data

collection technologies has created a continuous stream

of data which has been flooding our databases. This

trend will build up in the next years as already available

technologies find their way into our daily lives. Data

collection through location-aware devices, high-resolu-

tion remote sensing systems, decennial census operations

and the storing and management capabilities of Geo-

graphic Information Systems (GIS) made available

colossal volumes of geo-referenced data. This fact

created opportunities for developing an improved

understanding of a number of environmental and

socio-economic phenomena that are at the heart of

GIScience (Openshaw, 1999). Nevertheless, it also

shaped new challenges and difficulties on the analysis
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of multidimensional geo-referenced data. Today, the

availability of methods able to perform intelligent

reduction, on huge amounts of high-dimensional geo-

referenced data, is a central issue in GIScience.

The need to transform into knowledge the massive

digital geo-referenced databases has led geoscientists to

search for new tools, tools that are able to tame

complexity. The field of knowledge discovery constitutes

one of the most relevant stakes in GIScience research to

deal with this problem (Gahegan, 2003, Miller and Han,

2001). Although knowledge discovery and data mining

have put forward numerous methodologies and tools,

the need to adequate those tools to the specific context

of GIScience remains a research challenge for geoscien-

tists (Openshaw, 1999).

More than prediction tools we need to develop

exploratory tools based on classification and clustering

which enable an improved understanding of the avail-

able data. It has been suggested that neurocomputing

paradigms, such as the Self-Organizing Map (SOM)
d.
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(Openshaw et al., 1995, Openshaw and Wymer, 1995),

may provide the power and flexibility to improve the

overall quality of multidimensional geo-referenced data

classifications. The combination of better classification

algorithms and explicit focus on the issues of geographic

representation will certainly reap sizeable rewards. The

challenge is to be able to incorporate geo-reasoning into

the existing tools.

In this paper we concentrate on the application of the

SOM in the reduction of large volumes of multi-

dimensional geo-referenced data. More specifically, we

are interested in looking at the possibility of introducing

geographical knowledge within the classification pro-

cess. In order to test proposed variants of the SOM, two

artificial data sets and a census database of the

metropolitan area of Lisbon are used.

We propose three different variants of the SOM which

enable the explicit incorporation of geographic space

within the workings of the SOM algorithm, and

experimentally evaluate one of them. More specifically,

we try to explore the flexibility of the SOM to develop

approaches that can improve the existing classification

methods of multidimensional geo-referenced data.

In the next section an explanation of the workings of

SOM is given, along with a more detailed explanation of

the variants proposed. After that we perform some tests

on the artificial data sets. Next we present the main

results of the application of one of the variants to the

Lisbon metropolitan area data. Finally, some conclu-

sions are drawn.
2. Self-Organizing Map

Although the term ‘‘Self-Organizing Map’’ could be

applied to a number of different approaches, we shall

use it as a synonym of Kohonen’s self-organizing map,

or SOM for short. These maps are also referred to as

‘‘Kohonen neural networks’’ (Fu, 1994), ‘‘self-organiz-

ing feature maps—SOFM’’, ‘‘topology preserving fea-

ture maps’’ (Kohonen, 1995), or some variant of these

names. Kohonen describes SOM as a ‘‘visualization

and analysis tool for high-dimensional data’’, but

they have been used for clustering (Vesanto and

Alhoniemi, 2000), dimensionality reduction, classifica-

tion, sampling, vector quantization, and data mining

(Kohonen, 2001).

The basic idea of a SOM is to map the data patterns

onto an n-dimensional grid of neurons or units. That

grid forms what is known as the output space, as

opposed to the input space that is the original space

where the data patterns are. This mapping tries to

preserve topological relations, i.e. patterns that are close

in the input space will be mapped to units that are close

in the output space, and vice versa. The output space

will usually be two-dimensional, and most of the
implementations of SOM use a rectangular grid of

units. So as to provide even distances between the units

in the output space, hexagonal grids are sometimes used

(Kohonen et al., 1995). Single-dimensional SOMs are

common, e.g. for solving the travelling salesman

problem (Maenou et al., 1997), and some authors have

used three-dimensional SOMs (Takatsuka, 2001). Using

higher-dimensional SOMs (Villmann et al., 2003),

although posing no theoretical obstacle, is rare, since it

is not possible to easily visualize the output space.

Each unit, being an input layer unit, has as many

weights or coefficients as the input patterns, and can

thus be regarded as a vector in the same space as the

patterns. When we train or use a SOM with a given

input pattern, we calculate the distance between that

pattern and every unit in the network. We then select the

unit that is closest to the winning unit (best matching

unit—BMU), and say that the pattern is mapped

onto that unit. If the SOM has been trained successfully,

then patterns that are close in the input space will be

mapped to neurons that are close (or the same) in the

output space, and vice versa. Thus, SOM is ‘‘topology

preserving’’ in the sense that (as far as possible)

neighbourhoods are preserved through the mapping

process.

Before training, the neurons may be initialized

randomly. During the first part of training, they are

‘‘spread out’’, and pulled towards the general area (in

the input space) where they will stay. This is usually

called the unfolding phase of training. After this phase,

the general shape of the network in the input space is

defined, and we can then proceed to the fine tuning

phase, where we will match the neurons as far as

possible to the input patterns, thus decreasing the

quantization error.

The basic SOM learning algorithm may be described

as follows:

Let
wij be the weight vector associated with
unit positioned at columni rowj
xk be the vector associated with patternk
dij be the distance between weight vectorwij
and a given pattern.
h be a neighborhood function described
below.
a be the learning rate also described below.

For each input pattern:

(1)
 Calculate the distance between the pat-

tern and all units of the SOM
(dij ¼ ||xk�wij||) (this is called the
calculation phase)
(2)
 Select the nearest unit as winner wwin-
ner (wij:dij ¼ min (dmn)) (this is what is
usually called the voting phase)
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(3)
 Update each unit of the SOM according
to the update functionwij ¼ wij+ah
(wwinner,wij)||xk�wij|| (this is what
is usually called the updating phase)
(4)
 Repeat the steps (1) to (3), and update
the learning parameters, until a cer-
tain stopping criterion is met.
higher level SOMs
This algorithm can be applied to a SOM with any

dimension. The learning rate a, sometimes referred to as

Z, varies in the [0,1] interval and must converge to 0 so as

to guarantee convergence and stability for the SOM.

The decrease from the initial value of this parameter to 0

is usually done linearly, but any other function may be

used.

The radius, usually denoted by r, indicates the size of

the neighbourhood around the winner unit in which the

units will be updated. This parameter is particularly

relevant as it defines the topology of the SOM, deeply

affecting the unfolding of the output space. Initially, r

can be as big as the size of the network, but in order to

guarantee convergence and stability it has to converge to

1 or 0. For the sake of simplicity, r is sometimes omitted

as an explicit parameter. The update of both a and r may

be done after each training pattern is processed or after

the whole training set is processed.

The neighbourhood function h, sometimes referred to

as L or Nc, assumes values in [0,1], and is a function of

the position of two units (a winner unit and another

unit), and radius, r. It is large for units that are close in

the output space, and small (or 0) for units far away.

Usually, it is a function that has a maximum at the

centre, monotonically decreases up to a radius r and is

zero from there onwards. The two most common

neighbourhood functions are the bell-shaped (Gaus-

sian-like) and the square (or bubble).

To visualize the results of a SOM, U-matrices (Ultsch

and Siemon, 1990) may be used. The U-matrix is a

representation of a SOM in which distances, in the input

space, between neighbouring neurons are represented,

usually using a colour or grey scale. If distances between

neighbouring neurons are small, then these neurons

represent a cluster of patterns with similar character-

istics. If the neurons are far apart, then they are located

in a zone of the input space that has few patterns, and

can be seen as a separation between clusters. The U-

matrix constitutes a particularly useful tool to analyze

the results of a SOM, as it allows an appropriate

interpretation of the clusters available in the data.
...
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Fig. 1. Structure of a hierarchical SOM.
3. SOM variants

A very large number of SOM variants have been

proposed, and reviews of some of these can be found in

Kangas et al. (1990), Kaski (1997), Kohonen (2001), and
Vesanto and Alhoniemi (2000), but little work has been

done in the context of adapting the SOM to the specific

problems and paradigms of geosciences. Some of the

variants that can be found are just parameterizations or

minor adjustments to the basic SOM algorithm, while

others differ quite a lot and do not have the same

mapping and visualization properties of the SOM. We

shall now review some of the major variants which we

consider to be relevant in geo-referenced data analysis,

and present ways in which they may be applied.
3.1. Geo-enforced SOM

One simple way to modify the SOM and make it more

adequate to process geo-referenced data is based on

producing quasi-variants and testing spatial effects is

through the use of pre-processing. The Geo-enforced

quasi-variant is based on weighting the geographic

coordinates in order to make them as important as all

other variables available. This way each geographic

coordinate is multiplied by a constant, thus attributing

the same importance to the two geographical variables

as the rest of the entire set of variables. The weight that

should be attributed to the geographic coordinates is

defined by the user. Although subjective the decision will

determine the type of results achieved. Apart from the

subjectivity associated with the weighting of the

geographic variables, there is an additional problem in

this approach. Geographical locations that are located

far apart from the centre of the geographic distribution

will always be deficiently represented.
3.2. Hierarchical SOMs

Hierarchical SOMs are often used in application fields

where a structured decomposition into smaller and

layered problems is convenient. One or more than one

SOMs are located at each layer, usually operating on

different thematic variables (see Fig. 1).

The hierarchial SOMs were first introduced in Ichiki

et al. (1991), and were extensively used in speech

recognition, where each layer deals with higher units

of speech, such as phonemes, syllables and word parts
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Fig. 2. Structure of a Geo-SOM.
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(Behme et al., 1993; Kemke and Wichert, 1993; Jiang et

al., 1994).

Hierarchical SOMs can have several lower level

partial maps that cluster the data according to different

characteristics and then pass the results to an upper level

SOM, or they may have a lower level global SOM, that

acts as a gating mechanism to activate one of several

higher level SOMs that specialize in a certain area of the

input space.

In terms of geosciences one can envision the useful-

ness of hierarchical SOM in applications like geodemo-

graphics. The hierarchical SOM allows the creation of

purpose-specific or thematic classifications at lower

layers which are then composed into a single one. This

can constitute a major advantage as it has been noted

that the single-purpose geodemographic classifications

constitute more powerful tools than general-purpose

classifications (Openshaw and Wymer, 1995). Addition-

ally, the exploration of the different SOMs at lower

levels can be very valuable, especially if done in a

computational environment where dynamic linking

between SOMs can be set up. This way the interactive

exploration of the different classifications can provide

major insights. The idea is to take one of the SOMs,

select specific units and study the distribution of the

input patterns classified in that particular unit in the

other SOMs and in the geographic space.

3.3. Geo-SOM

Another way of incorporating some geographical

reasoning is to introduce the first law of geography

(Tobler, 1970) in the training of a SOM. This would

suggest that when seeking the winning unit for a certain

data pattern, only the neurons geographically close to

the data pattern should be searched. Just how close the

candidates for BMU should be can be defined by a

variable k, which we call ‘‘geographical tolerance’’. If we

make this geographical tolerance k ¼ 0, then we force

the BMU to be the unit that is geographically closest.

Increasing k allows units that are within a radius k

(measured in the output space) to be potential BMUs. If

k is of the order of the size of the map, then it has no

influence in the search for BMU and we have the

standard SOM. This approach has similarities with the

Hypermap approach (Kohonen, 1991), where only part

of the input features are used to find the best match, and

with the Kangas architecture (Kangas, 1992), where

only a small number of neighbours, in the output space

of the previous winner, are searched. More generally, it

is the idea of selecting only a subset of neurons as

candidates for the winning unit that leads to what we

call a Geo-SOM (see Fig. 2).

In this architecture the selection of the best match

unit, or winning unit, is done in two steps. First, a best

match is searched using only the geographical coordi-
nates of the input vector. Only the units in the output

space neighbourhood of this first best match are then

compared to the complete input pattern, to select the

final best match. The units are then updated according

to the standard rule. The Geo-SOM forces units that are

close in the output space to be close in the input space

too, thus creating clusters of areas that will be

geographically close.
4. Experiments with artificial data

In order to assist the comprehension of the major

characteristics and properties of the different SOM

variants presented, a set of tests based on artificial data

is carried out. The objective of using artificial data is to

produce a controlled environment where certain features

of the variants can easily be understood. Next we

present two experiments in which different SOM

variants were tested, with particular emphasis on the

Geo-SOM.

4.1. Experiment 1

For this example we used a set of 200 data points

evenly spaced on a surface with coordinates xA[0,1],

yA[0,2]. Each point is associated with a single feature z

which is 0 whenever 0.5oyo1.5, and 10 otherwise, as

can be seen in Fig. 3.

If we cluster the data based on non-geographical

features, then we will have two very well defined clusters:

one where z ¼ 10 and another where z ¼ 0; as can be

seen in Fig. 4. If we consider only geographical

coordinates, then we will have no well-defined clusters,

since the points are evenly spaced. If we consider all

three components, we may or may not obtain well-

defined clusters. If no pre-processing is done, and since

in this case the geographical feature has a very small

scale when compared to the other feature, we will

basically obtain only two clusters. If we pre-process the

data points to have approximately the same scale in all

components, we will obtain rather fuzzy clusters.

Depending on the different scalings, we may obtain 1,
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Fig. 3. Artificial data for experiment 1.

Standard SOM
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Fig. 4. U-matrix obtained using a standard SOM on artificial

data of experiment 1.
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Fig. 5. U-matrices obtained using Geo-SOMs on the artificial

data of experiment 1.

Fig. 6. Artificial data for experiment 2.
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2 or 3 clusters, but never clear-cut separations. A Geo-

SOM with 0 tolerance will simply calculate local

averages, and thus will just smooth the original data

set, and the three clusters will still appear clearly in the

U-matrix. The best results are obtained using a Geo-

SOM with k ¼ 2; as can be seen in Fig. 5. It is interesting

to note that a 0 tolerance in the Geo-SOM produces

blurred clusters, while relaxing this constraint will allow

the clusters to define themselves better without losing

their geographic localization.

4.2. Experiment 2

We constructed a second toy problem, this time

comprising 5000 data points, each of which has

geographical coordinates (x and y), and a third variable

z that represents non-geographical data. The points

follow a uniform distribution in the geographical

coordinate, within the rectangle limited by [(0,0), (20,

5)] (see Fig. 6). In the non-geographical dimension there

are three zones of high spatial autocorrelation, where

the values of z are very similar among neighbouring
points, with a uniform in [90, 91] in two zones and

[10,11] in another. There is also one area of ‘‘negative

autocorrelation’’, where half the data points have zE10

and the other half have zE90. In the rest of the input

space z has a uniform distribution in [0,100].

Here we compare a standard SOM with the Geo-

SOM. In order to get a clear image of the error produced

by each one of the tested variants, we decided to

separate the error in geographic error and quantization

error. The geographic error computes the average
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Table 1

Average geographical and quantization errors for artificial data

of experiment 2

Type of map vs. type of error Geo-SOM Standard SOM

Geographical error 1.1800 1.6713

Quantization error 7.1130 0.9030
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distance between each input pattern and the unit to

which it was mapped. This gives a notion of the

geographic displacement of the units relative to the

input patterns they represent. The quantization error

provides an assessment of the distances between input

patterns and the unit to which they are mapped in the

attribute space, in this case the z variable. The

quantization error provides a measure of the quality of

the representation of z (non-geographical attributes)

achieved.

The results are quite elucidative in the sense that they

allow a very clear distinction between the behaviours of

the different variants. Clearly, the restrictions imposed

by Geo-SOM tend to degrade the quantization error and

improve the geographic error. In terms of quantization

error the highest value is observed, as would be

expected, in the Geo-SOM. The actual values may be

seen in Table 1.

The quantization errors shown in the table are

averages for all data patterns, and the individual values

vary quite a lot. A close inspection of the way this

quantization varies allows us to identify different

clusters, which is one of the main purposes of using

these techniques. If we calculate the average quantiza-

tion error of the input patterns that are mapped to each

individual unit and plot these values in a contour plot,

we obtain the results presented in Fig. 7. In this figure we

plot the quantization error as a function of the

geographical coordinates when using the Geo-SOM

and the standard SOM.
Fig. 7. Maps with average quantization error per unit (top), and geog

k ¼ 2 (left) and standard SOM (right).
The Geo-SOM provides interesting insights into the

data. Homogeneous areas are very evident, as areas with

low quantization error appear throughout the map. The

lower right corner, where the data follow two distinct

behaviours, is divided (approximately along its diag-

onal) into two homogeneous areas, one containing each

type of data. These are separated by another area that

serves as border, where the quantization error is quite

large. A careful inspection of the remaining area shows

stripes of low quantization error. These areas of low

quantization are in general surrounded by sharp

frontiers, which can be easily identified by the presence

of smaller than average Thiessen polygons. As a

conclusion, this map allows us to gain insight into less

well structured areas of the data.

When using the standard SOM, the map has little

information about the geographical organization of

clusters. Since these are defined mostly by non-geogra-

phical attributes, their geographical location is basically

meaningless and may lead to errors. The lower left
raphical coverage of those units (bottom), using Geo-SOM with
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corner of the map has basically the same configuration

as the other corners even though the data in that corner

are significantly different. We may thus conclude that

while the standard SOM may be a good clustering tool,

it naturally fails to single out the geographical informa-

tion contained in the data.
Fig. 8. Geographic placement of SOM units for Geo-SOM

(top) and standard SOM (bottom), units are represented by

black points and EDs by light shaded squares.
5. Practical application

For practical application, data from the Portuguese

Institute of Statistics are used. These data refer to

Lisbon’s metropolitan area, and is at the enumeration

district (ED) level, including 65 socio-demographic

variables. These variables describe ED based on six

main topics: information about buildings, families,

households, age structure, education levels, and

economic activities. Additionally, we introduced

two explicitly geographic variables, representing the

(x,y) coordinates of the geometric centroids of the

EDs. The Geo-SOM was implemented in

Matlabs compatible with Somtoolbox (Vesanto et al.,

2000).

It is not our aim, at this point, to compare the quality

of the results of each approach. Rather, the idea is to

analyze the results especially in terms of their geographic

context. The basic difference between the two ap-

proaches can be easily seen in Fig. 8. The Geo-SOM

distributes the units according to two criteria: the

geographic positioning of the input patterns (the ED’s

centroids), and the minimization of the quantization

error of the units. This yields a distribution of the units

that roughly follows the density of the input patterns but

also takes into account their differences in terms of

socio-economic variables. For example, if two areas

have the same input pattern density, but in area A the

similarities between the input patterns is higher than in

area B, then area B will be granted a higher number of

units. On the other hand, the standard SOM places the

units solely based on the minimization of the quantiza-

tion error. Because of this, the centre of the geographic

map is very densely populated with units and very few

are displaced to represent the characteristics of the

periphery.

The possibility of using the Geo-SOM in the

definition of homogeneous zones or in the identification

of discontinuities in spatial data is particularly appeal-

ing. Bearing in mind that each unit has a geographic

positioning and also an associated quantization error, a

Voronoi partition based on the geographical distribu-

tion of the units can be made. This partition along with

the quantization error allows us to identify zones where

the change in characterization of the EDs happens. Fig.

9 shows such an example. The dark shaded polygons

represent boundary areas. In fact, the analyses of the

figure is in accordance with the reality of the city in the
sense that most of the areas represented as borders

correspond to ‘‘de facto’’ borders. For instance, some of

these areas represent large infrastructures such as the

Lisbon airport where the number of input patterns is

very scarce being surrounded by very different socio-

economic zones.
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Fig. 9. Closeup of study region, showing areas with high

quantization errors (in dark shades), geographical placement of

SOM units (squares) and input data (circles).
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6. Conclusions

In this paper we present a number of SOM variants

that are particularly well suited to deal with geo-

referenced data. The fundamental idea is to introduce

spatial paradigms, such as spatial autocorrelation, into

the workings of the standard SOM algorithm. We

present the Geo-SOM, which enables the treatment of

the spatial dimension of the data separately from other

attribute data, when performing data reduction tasks.

The Geo-SOM yields a coherent geographic distribution

of the SOM units, according to the geographic density of

the input patterns but also according to the similarity

between neighbours. The potential of this new approach

in the definition of homogeneous zones and the

identification of borders is shown in an artificial data

set and also in a real world application. We also wrote

the Matlab software to implement these variations,

which is available at http://www.isegi.unl.pt/docentes/

vlobo/projectos/programas/programas.html. One of the

major challenges in terms of future work in this area is

to derive the relations established between geographic

density and attribute space density by the Geo-SOM.

Additionally, it is important to include other tools made

available by the SOM, such as U-matrices, in the

analysis of the results provided by this new approach.
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