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Abstract. Geocomputation has a long tradition in dealing with fuzzyness in 
different contexts, most notably in the challenges created by the representation 
of geographic space in digital form. Geocomputation tools should be able to 
address the imminent continuous nature of geo phenomena, and its 
accompanying fuzzyness. Fuzzy Set Theory allows partial memberships of 
entities to concepts with non-crisp boundaries. In general, the application of 
fuzzy methods is distance-based and for that reason is insensible to changes in 
density. In this paper a new method for defining density-based fuzzy 
membership functions is proposed. The method automatically determines fuzzy 
membership coefficients based on the distribution density of data. The density 
estimation is done using a Self-Organizing Map (SOM). The proposed method 
can be used to accurately describe clusters of data which are not well 
characterized using distance methods. We show the advantage of the proposed 
method over traditional distance-based membership functions.  
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1   Introduction 

One of the most challenging tasks in geocomputation has been the need to provide an 
adequate digital representation to continuous phenomena such as those typically 
captured in geographic information. The need to define crisp boundaries between 
objects in geographic space leads to data representations that, while apparently 
providing a rigours description, in reality have serious limitations as far as fuzziness 
and accuracy are concerned. “There is an inherent inexactness built into spatial, 
temporal and spatio-temporal databases” largely due to the “artificial discretization of 
what are most often continuous phenomena” [1]. The subtleties that characterize 
space and time changes in geo-phenomena constitute a problem as they carry large 
levels of fuzziness and uncertainty. While fuzziness might be characterized as 
inherent imprecision which affects indistinct boundaries between geographical 
features, uncertainty is related to the lack of information [1]. Note that these 
characteristics are not limited to the spatial representation but also include 
categorization, and attribute data. All these facts lead to the eminently fuzzy nature of 
the data used in geocomputation, or as [2] puts it, “uncertainty is endemic in 
geographic data”. Rather then ignoring these problems and dismissing them as 
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irrelevant, the geocomputation field should be able to devise ways of dealing with 
them. In many instances this will translate into attributing uncertainty levels to the 
representations. This way the user will be aware of the limitations involved in the use 
of the data, and thus be able to intuitively attribute some level of reliability. 

Fuzzy Set Theory constitutes a valuable framework to deal with these problems 
when reasoning and modeling in geocomputation [2]. Fuzzy Set Theory allows partial 
memberships of entities to concepts with non-crisp boundaries. The fundamental idea 
is that while it is not possible to assign a particular pattern to a specific class it is 
possible to define a membership value. In general, the application of automatic fuzzy 
methods is distance-based. Thus, the (geographic or attribute) distance between a 
prototype and a pattern defines the membership value of the pattern to the set defined 
by the prototype. This approach is not only intuitive but also adequate to deal with 
many different applications. Nevertheless, there is yet another way of approaching the 
problem, which trades distance for density. In this case, it is not the distance of the 
pattern to the prototype that governs the membership value, but the pattern density 
variations between them. This perspective will emphasize discontinuous zones 
assuming them has potential boundaries. Membership will be a function of the 
changes in the density in the path between the pattern and the prototype. Thus, if 
density is constant then the membership value will be high. There are several classical 
examples in clustering where the relevance of density is quite obvious [3].  In this 
paper a new method for defining density-based fuzzy membership functions is 
proposed. The method automatically determines fuzzy membership coefficients based 
on the distribution density of data. The density estimation is done using a Self-
Organizing Map (SOM). The proposed method can be used to accurately describe 
data which are not well characterized using distance methods. We show the advantage 
of the proposed method over traditional distance-based membership functions. 

2   Problem statement 

Fuzzy Set Theory was introduced in 1965 by Zadeh [4]. A fuzzy set may be regarded 
as a set with non-crisp boundaries. This approach provides a tool for representing 
vague concepts, by allowing partial memberships of entities to concepts. In the 
context of data analysis, entities are usually represented by data patterns and concepts 
are also represented by data patterns that are used as prototypes. Fuzzy membership 
may be defined using the following formalism. Given: 

• a set of n input patterns X = {x1, …, xi, …, xn}, where xi = (xi1, …, xij, …, xid)T ∈ 
ℜd, and each measure xij is a feature or attribute of pattern xi

• a set of k concepts defined by prototypes C={c1, ..., cc, …, ck}, where cc = (cc1, 
…, ccj, …, ccd)T ∈ ℜd, with k<n, 

 
the fuzzy membership uic of pattern xi to a prototypes cc is defined so that: 
 

uic ∈ [0,1], i=1, …, n and c=1, …, k  (1) 
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There are many ways of defining memberships uic. These may be divided into two 
major groups e.g. [5, 6] : 

1- The probabilistic methods, where the sum of memberships of a pattern to all 
concepts has to add to 1: 

uic = 1 , i=1, …, n (2) 

Some authors state that these memberships can be interpreted as a relative 
perspective e.g. [5], since the membership of a pattern to a given concept depends on 
the membership of that pattern to all other concepts. 

2- The possibilistic methods, where it is only required that: 

uic ≥ 0, i=1, …, n (3) 

While still maintaining the need to satisfy (1), the possibilistic approach relaxes the 
constraint imposed by (2). This perspective may be interpreted as an absolute way of 
determining the membership of a pattern to a concept, since its computation does not 
depend on the membership of that pattern to other concepts. 

Different methods of determining fuzzy membership coefficients have been 
proposed e.g. [7]. Most of these methods are based on the distance between patterns 
and prototypes. However, in some cases distance based methods may not achieve the 
best results. A classical example of this is given by Ultsch [3] in the form of two 
rings, in which membership of a data pattern to one of the rings can not be defined as 
distance to any single point. 

In this paper a new method for determining fuzzy membership coefficients based 
on variations of data pattern density is proposed. In order to compute the density 
distribution of data X in the ℜd input space, the use of a Self-Organizing Map (SOM) 
is proposed. 

3 – Density estimation using a Self-Organizing Map 

A Self-Organizing Map (SOM) is an unsupervised neural network. It was introduced 
in 1982 by Kohonen [8], and has been used as visualization tool for high dimensional 
data, as well as in many different tasks such as clustering, dimension reduction, 
classification, sampling, vector quantization and data mining [9]. 

The basic idea of a SOM is to map a set of data patterns onto a (usually) 2-
dimensional grid of neurons or units. That grid forms what is known as the output 
space, as opposed to the input space that is the original space where the data patterns 
are. When a SOM is trained with a given dataset, its units will tend to spread 
themselves in the input space in a way that is proportional to some function of the 
density of the data patterns [10]. This means that where data density is high, the SOM 
units are close to each other in the input space. In places where data density is low, 
SOM units, even if neighbors in the grid (output space), will be far apart from each 
other in the input space.  

The SOM may be regarded as a graph [11], where the SOM units are the nodes, 
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and edges connect the units that are neighbors in the output space, i.e., the edges form 
the regular grid of the SOM. We may associate to each of these edges a value that 
corresponds to the distance, in the input space, between its end nodes. Given two 
neighboring SOM units wa and wb, the value associated with the edge E that joins 
them is: 

E(wa, wb) = || wa – wb || (4) 

 In this paper, this graph is named a U-Graph. This U-graph is usually the first step 
in the computation of a U-Matrix [12], which is widely used in cluster analysis [13]. 

4 - An algorithm to compute fuzzy membership functions 

Let X be the set of input patterns {x1, …, xi, …, xn} and W be a U-graph with  p×q 
nodes w, obtained by training a SOM with those data patterns. 

The cost of a path P with e edges between two nodes a and b is defined as: 
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Where w1, w2, ..., we are the nodes that form the path. The cost is obtained from the 
sum of absolute differences of edges, between pairs of adjacent edges on the path P 
from node a to node b. If the path has less than 3 nodes, then the cost is considered to 
be zero. 

If in some area of the SOM the data patterns have a more or less constant density, 
the distance between units will also be more or less constant, and thus the cost will be 
low. On the other hand, if there are variations in the data pattern density, the SOM 
units will be unevenly spaced. This varying distance between nodes will lead to a high 
value in the cost function. 

Areas where the density is constant may be regarded as a continuous cluster, and 
thus all data patterns in that area should have a high membership to a reference 
prototype. On the other hand, if there are large variations in the data density, the data 
patterns should be considered to form different clusters, and thus the membership of a 
pattern to a prototype in another cluster should be low. 

To convert low cost to high membership (and vice-versa), the membership of a 
pattern xi to a concept cc is calculated using: 
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The procedure to compute the membership of a pattern xi to concept cc may now be 
defined as follows: 
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1. Train a SOM with the dataset X 
2. Compute the U-Graph of that SOM 
3. Find the node wx that maps pattern xi
4. Find the node wc that maps concept cc
5.  Find the path between wc and wx that minimizes the cost function (5) 
6.  Compute the membership of xi to cc using membership function (6) 
 
The first two steps must be done only once, while the others must be repeated for 

each data pattern. Step 5 involves solving an optimization problem on a graph. It must 
be pointed out that this is not simply the shortest path along the graph, which would 
be a trivial problem. The fact that the absolute value of the difference between two 
consecutive edges is used, instead of the values of the edges themselves, renders the 
traditional shortest path algorithms useless. While this is a serious practical problem, 
it is irrelevant for the purpose of this paper. In the tests presented in the next section, 
this optimization was performed using a very fast heuristic based on simulated 
annealing, that obtains a sub-optimal but still very useful solution. 

5 – Preliminary results with artificial data 

From a set of problems where classical methods behave poorly in fuzzy 
membership determination, the one shown in Fig. 1 was chosen. It is composed of 
two zones, each one with approximately uniform pattern density distribution, but with 
numerically different pattern densities between them. The patterns were placed 
randomly on both zones, 1000 patterns on zone A (the left half of the square) and 100 
patterns on zone B (the right half of the square). 

After training the SOM, more units will end up on zone A, due to the higher 
density of patterns, and the opposite happens in zone B (Fig.1). It is worth noticing 
that each zone has a prototype density approximately constant, which is a function of 
the pattern density [10]. 

To characterize zones A and B, one data pattern from each must be selected as a 
prototype, and the membership of all other patterns to those two prototypes must be 
computed. It would be desirable that all data patterns of zone A have a high 
membership to it’s prototype, and a low membership to the other one (and vice-
versa).  

Two patterns were chosen as reference prototypes, one pattern from each of the 
zones A and B (Fig.1). They were intentionally placed asymmetrically with respect to 
the border between zones A and B.  
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Fig. 1. Top left side: Pattern dataset and zone identification. Each zone has approximately 
constant pattern density. Top right side: SOM trained with the dataset. Notice the 
approximately constant density of SOM units in each zone. On the bottom we present the 
defuzzified results of using the classical membership functions (eq.7) on the left, and the 
proposed membership functions on the right. Darker patterns have higher membership to  

To act as benchmark against the new method proposed, one of the most popular 
distance based methods was used [7], which computes membership of a data pattern x 
to concept c as: 
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The values of membership functions computed using this equation and using the 
proposed method are presented in Fig. 2. By observing these figures, we may easily 
see that: 

1- When using probabilistic distance based methods, data patterns far away have 
average membership values, and these are approximately the same for all concepts. 
This uncertainty may be solved by using a “maximum” operator, but this defeats the 
purpose of fuzzy membership. On the other hand, using the approach proposed in this 
paper, even distant patterns are clearly identified as belonging to a cluster provided 
the pattern density is constant. The same effect could be obtained by certain clustering 
algorithms such as simple linkage, but these fail in other cases [3]. 

2- When using distance based methods, the borders between concepts will always 
be in the mid points between their respective prototypes. This means that the exact 
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positioning of these prototypes is critical. If the relative positions of the prototypes 
vary slightly, the line separating the classes may change considerably. If the borders 
are not straight lines, distance based methods cannot be used to identify them unless 
several prototypes are used for each concept (forming stepwise linear borders). In the 
method proposed in this paper, the borders will occur whenever there are variations in 
data density, regardless of how far from the reference prototype, and borders may 
have any shape. 

 

      

      
 

Fig. 2. Probabilistic membership functions to c1 (right) and c2 (left) obtained with (eq. 7) on the 
top row, and with the proposed method on the bottom. 

3- When using probabilistic based methods, data patterns on the borders are 
considered to have 0.5 membership to each concept. In many cases this is not at all 
true, since the border belongs simultaneously to both concepts, with high membership 
values. In the method proposed in this paper, the borders have high membership to 
both concepts. 

6 – Conclusions and future work 

In this paper a new method for computing fuzzy memberships was proposed. This 
method allows membership to be sensibly determined in special cases where distance 
based methods fail. 

The method requires computing a large SOM and U-Graph with the available data. 
This is not a problem, since the algorithm for training SOMs is quite fast and is easily 



8      Victor LoboP1,2P, Fernando BaçãoP1P, Miguel LoureiroP1P 

parallelized [14]. 
One of the bottlenecks of the proposed algorithm is the optimization of the path 

along the U-Graph. This is an interesting problem requiring some research, but 
fortunately, as shown in our tests, simple heuristics are quite effective for this kind of 
problem. 

Preliminary results with artificial datasets indicate that the new method is indeed 
efficient in characterizing clusters which are adjacent but have different densities. 

Although not tested experimentally, it seems clear that the new method will also 
characterize correctly any clusters, provided that between them there are areas where 
data density is low, since the variation in data density will induce high values in the 
cost function, and thus low values in membership. This effect will occur even if the 
clusters have very irregular or “long” shapes. 
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