Resolução de PL usando o método gráfico

Resolução gráfica

- Ideia geral
 - □ Vamos representar as variáveis de decisão em eixos cartesianos
 - □ Vamos representar as restrições como rectas no espaço definido por essas variáveis
 - □ Vamos ver dentro dessa zona, onde é que a função objectivo é máxima/mínima

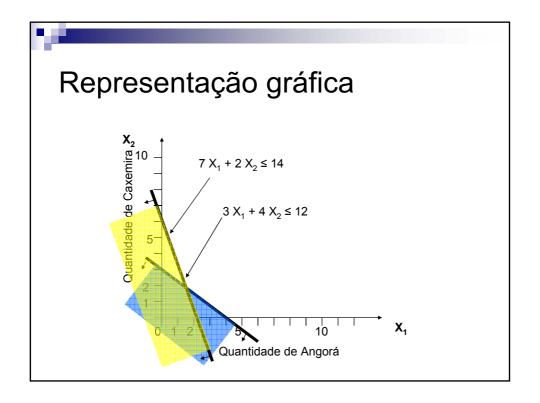
Exemplo: Empresa "Pisobom"

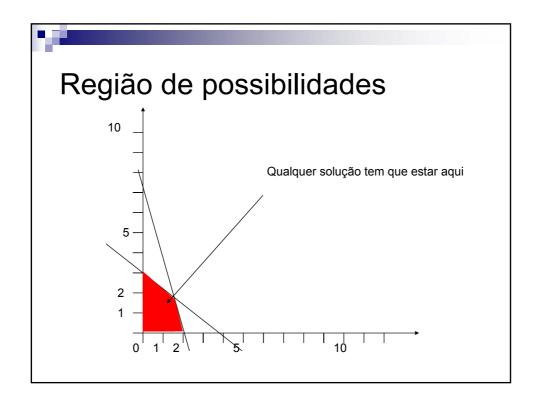
[Hill 99]

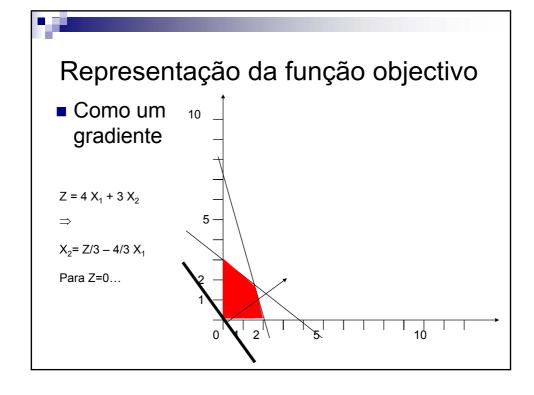
- A empresa "Pisobom" fabrica 2 tipos de alcatifa:
 - □ Angorá (que dá um lucro de 40€ /100 m)
 - □ Caxemira (que dá um lucro de 30€ /100 m)
- O que é que a fábrica deve produzir?
 - ☐ Temos que ver as restrições...
 - □ Vamos considerar que o factor limitativo é a disponibilidade das máquinas que são usadas no fabrico dessas alcatifas

Exemplo "Pisobom"

- Para produzir a alcatifa, para além de outros recursos, usam-se duas máquinas:
 - □ A (que pode laborar até 12 horas por dia)
 - □ B (que pode laborar até 14 horas por dia)
- Para fabricar 100m de alcatifa Angorá são necessárias 3 horas da máquina A, e 7 da máquina B
- Para fabricar 100m de alcatifa Angorá são necessárias 4 horas da máquina A, e 3 da máquina B


Modelo da Pisobom


- Variáveis de decisão:
 - □ X₁ Quantidade de angorá (100 m)
 - $\square X_2$ Quantidade de caxemira (100 m)
- Função objectivo a maximizar:
 - \Box Z = 40 X₁ + 30 X₂
- Restrições
 - $\square 3 X_1 + 4 X_2 \le 12$ (Máquina A)
 - \Box 7 X₁ + 2 X₂ \leq 14 (Máquina B)


Condições para aplicação do "modelo geral de programação linear"

- Proporcionalidade
 - □ Equações são todas lineares
- Divisibilidade
 - □ As variáveis são contínuas
- Não negatividade
 - ☐ As variáveis são todas positivas ou zero
- Todas são verificadas!

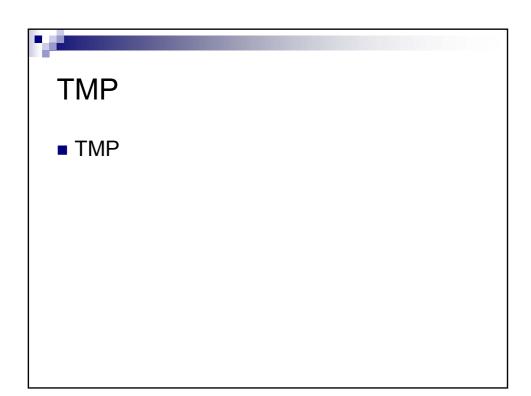
Representação da função objectivo 3D Z = 40 X₁ + 30 X₂ (para simplificar a escala, e sem perder generalidade, vamos usar Z = 4 X₁ + 3 X₂)

Considerações

- O ponto óptimo é "normalmente" na intercepção de 2 variáveis
 - □ Faz sentido ?
 - □ Casos em que não é

Problemas de minimização

- Representação formal
- Região de possibilidades
- Exemplo:
 - $\Box C=12Y_1+14Y_2$
 - \Box 3 Y₁+7 Y₂ \geq 4
 - □ $4 Y_1 + 2 Y_2 \ge 3$


Problemas mistos (restrições max/min)

- Exemplo:
 - $\Box C = X_1 2 X_2$
 - □ $-15 X_1 + 10 X_2 \ge 75$

Soluções algébricas

- Problema das desigualdes
 - □ Podemos transforma-las em igualdades, acrescentando variáveis de folga
 - □ Ficamos com um SISTEMA DE EQUAÇÕES

Problemas mistos (restrições max/min) ■ Exemplo: a empresa "Modus" □ Empresa de trabalho temporário □ Angariação de 1 trabalhador (inscrição na base de dados) tem um custo de 150€ □ Colocação de 1 trabalhador numa empresa dá um lucro de 100€ / dia □ Empresa quer garantir um