

Método Simplex

- Algoritmo para resolver problemas de programação linear
- George Dantzig, 1947
- Muito utilizado
 - □ Facilmente implementado como programa de computador
 - □ Consegue resolver problemas com muitas variáveis (milhares)
 - □ Produz variáveis auxiliares para análise de sensibilidade
 - □ Convém saber resolver "à mão", para se compreender o seu funcionamento.

Mais um problema de PL

- Wyndor Glass Co.
 - □ 3 oficinas com alguma capacidade sobrante
 - Oficina nº1 Trabalhos em Alumínio
 - Oficina nº2 Carpintaria
 - Oficina nº3 Montagem final
 - □ 2 propostas de novos produtos
 - 1 Portas de vidro com caixilho de alumínio
 - 2 Janelas grandes com caixilho de madeira
 - □ Que dados é preciso recolher para tomar uma decisão "óptima" ?

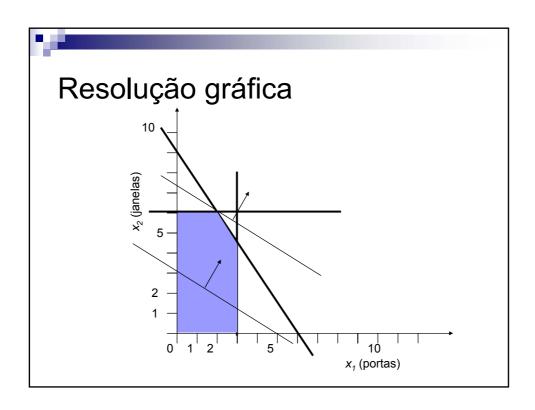
	П	

Dados do problema

- Quanta capacidade sobrante existe ?
 - ☐ Oficina 1 (alumínios) 4 horas/semana
 - □ Oficina 2 (madeiras) 12 horas/semana
 - □ Oficina 3 (montagem) 18 horas/semana
- Quanto tempo demora o fabrico das peças ?
 - □ 1 lote de portas 1h nos alumínios, 3 na montagem
 - □ 1 lote de janelas 2h na carpintaria, 2 na montagem
- Que lucro se consegue com as peças ?
 - □ 1 lote de portas 3.000€
 - □ 1 lote de janelas 5.000€

Formalização

- Variáveis de decisão
 - $\Box x_1 N^{\circ}$ de lotes de portas
 - $\square x_2$ N° de lotes de janelas
- Função objectivo:
 - $\Box Z = 3x_1 + 5x_2$
- Restrições
 - □ x₁≤ 4
- $2x_2 \le 12$
 - $3x_1 + 2x_2 \le 18$
- $\square x_1, x_2, x_3 \ge 0$



V 1.1, V.Lobo, EN / ISEGI, 2008

Alguns pontos a considerar

- A solução (caso exista) estará sempre na intercepção de duas restrições
 - □ Basta procurar uma solução nas intercepções
- Para irmos de uma intercepção para outra, basta seguirmos uma das restrições
 - □ Devemos seguir aquela que provoque maior variação no valor da função objectivo
- Uma solução inicial trivial é considerar que as variáveis de decisão são todas nulas

Método simplex: 1,2,3,4 e 5!

- 1 Escrever as equações numa **forma canónica** (tabular)
- 2 Começar com uma solução inicial viável
- 3 Melhorar a solução usando uma das restrições
- 4 Testar a optimalidade da solução
- 5 Repetir os passos 3 e 4 até não ser possível melhorar mais

V 1.1, V.Lobo, EN / ISEGI, 2008

O sistema na forma canónica ...

- Gostaríamos de ter um sistema de equações
 - É mais fácil trabalhar com equações do que com inequações
- Vamos obter um sistema com:
 - n equações (restrições e função objectivo)
 - m incógnitas "verdadeiras" (variáveis de decisão)
- Se *m*>*n*
 - Há várias soluções possíveis. Podemos fixar m-n variáveis, e só então as n restantes ficam definidas

O sistema na forma canónica (1)

- Transformar inequações em equações
 - □ Acrescentar uma **variável de folga** nas restrições:
 - $Ax_1 \le B$ \Rightarrow $Ax_1 + x_2 = B$, $x_2 \ge 0$
 - □ Variáveis de folga
 - Formam as variáveis básicas iniciais do simplex
 - Têm sempre coeficiente 1
 - Aparecem apenas numa das equações de restrição
 - Ficamos com um problema aumentado, onde temos as variáveis de decisão e as variáveis básicas
 - Se assumirmos que as variáveis de decisão são 0, então as variáveis de folga são iguais a B

V 1 1 V Loho EN / ISEGI 2008

O sistema na forma canónica (2)

Sistema original

$$\begin{aligned} &\text{Max } Z = C_1 x_1 + C_2 x_2 + C_3 x_3 \\ &\text{s.a.} \\ &\text{A}_{11} x_1 + \text{A}_{12} x_2 + \text{A}_{13} x_3 \leq \text{B}_1 \\ &\text{A}_{21} x_1 + \text{A}_{22} x_2 + \text{A}_{23} x_3 \leq \text{B}_2 \end{aligned}$$

 $x_1, x_2, x_3 \ge 0$

Soluções: (x_1, x_2, x_3, Z)

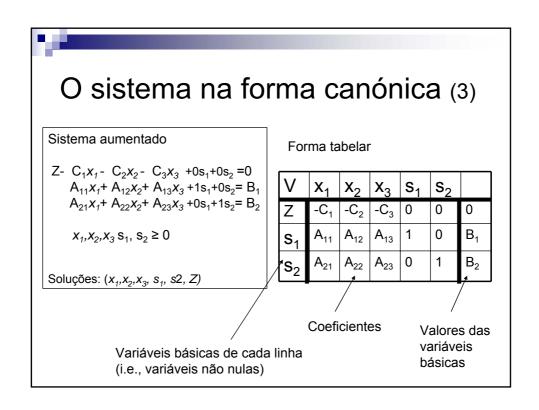
Sistema aumentado

Z-
$$C_1x_1$$
- C_2x_2 - C_3x_3 +0s₁+0s₂ =0
 $A_{11}x_1$ + $A_{12}x_2$ + $A_{13}x_3$ +1s₁+0s₂= B_1
 $A_{21}x_1$ + $A_{22}x_2$ + $A_{23}x_3$ +0s₁+1s₂= B_2

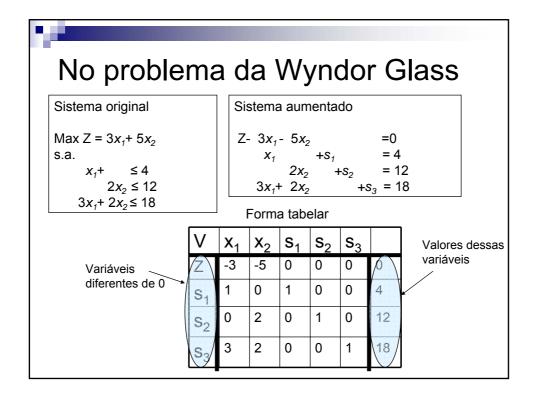
 $x_1, x_2, x_3 s_1, s_2 \ge 0$

Soluções: $(x_1, x_2, x_3, s_1, s_2, Z)$

- Soluções do sistema aumentado são também soluções do sistema original
 - Sistema aumentado tem sempre mais variáveis que equações, logo posso forçar os valores de algumas delas, obtendo então os valores das outras
 - □ O valor das variáveis básicas está directamente acessível



V 1.1. V.Lobo, EN / ISEGI, 2008



٠,

Solução inicial, e significado da tabela

- A solução inicial é a trivial:
 - □ As variáveis de decisão são 0
 - □ As variáveis de folga são iguais à restrição
 - □ A função objectivo é 0
- As variáveis não básicas da tabela são nulas
- As variáveis básicas têm o valor da última coluna

V 1.1, V.Lobo, EN / ISEGI, 2008

Ideia geral para melhorar a solução

- Vamos trocar de variáveis base
- Vamos fazer crescer uma das variáveis não básicas (que assim deixa de ser 0)
 - □ Vamos escolher a que mais contribui para o lucro
 - ☐ Essa variável passa a ser variável base
- Vamos "sacrificar" uma das velhas variáveis básicas.
 - □ Vamos escolher a variável que menos dimiui com essa entrada
 - □ Essa variável deixa de ser base e passa a ser 0

Ideia geral para melhorar a solução

- Interpretação:
 - □ Estamos a eliminar a folga (variável básica) de uma das restrições, aumentando uma variável de decisão
- Passos para melhorar
 - □ Escolher variável a "entrar" e variável a "sair"
 - ☐ Ajustar as equações para que a variável que entra passe a ser variável base
 - Ter coeficiente 1
 - Só aparecer numa equação

Regras para escolher as novas variáveis base

- Regra de entrada
 - □ Escolher a variável que na primeira linha tenha o coeficiente negativo que em módulo for maior
 - Escolher x_i: i=argmin -C_i, -C_i<0
- Regra de saída
 - □ Escolher a variável base *i* que na sua linha tiver menor razão B_i/A_{ik} , com $A_{ik} > 0$
 - A_{ik} é o coeficiente da variável que vai entrar

No problema da Wyndor Glass

- Variável que entra:
 - $\square X_2$
- Variável que sai:
 - $\square S_2$

V	x ₁	X_2	s ₁	s_2	s_3	
Ζ	-3	-5	0	0	0	0
s ₁	1	0	1	0	0	4
s_2	0	2	0	1	0	12
s_3	3	2	0	0	1	18

V 1.1, V.Lobo, EN / ISEGI, 2008

Ajuste para a forma canónica, por condensação de Gauss

 Fazer entrar/sair variáveis não é mais ajustar a tabela para obedecer às condições das variáveis base

٧	X ₁	\mathbf{X}_2	S ₁	s_2	S_3	
Ζ	-3	-5	0	0	0	0
s_1		0	1	0	0	4
s_2	0	2	0	1	0	12
s_3	3	2	0	9	1	18

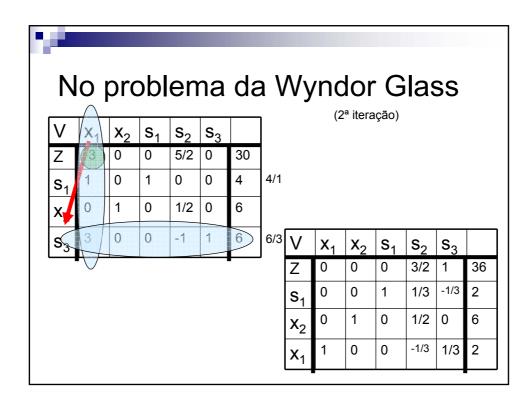
V	x ₁	X_2	s ₁	s_2	s_3	
Ζ	-3	0	0	5/2	0	30
S ₁	1	0	1	0	0	4
x ₂	0	1	0	1/2	0	6
s_3	3	0	0	-1	1	6

Tem que passar a ser 1

Tem que passar a ser 0

Teste de optimalidade

- Verificar se ainda há algum coeficiente negativo na função objectivo
- Se sim:
 - □ Repetir o processo de escolha e ajuste
- Se não
 - □ Temos a solução óptima, e sabemos o valor das variáveis de decisão e o lucro (todos na última coluna)



No problema da Wyndor Glass

■ Solução:

□ Consegue-se ter um lucro de 36, fabricando 6 lotes de janelas e 2 lotes de portas

V	x ₁	x ₂	s ₁	s_2	s_3	
Ζ	0	0	0	3/2	1	36
S ₁	0	0	1	1/3	1/3	2
X ₂	0	1	0	1/2	0	6
X ₁	1	0	0	-1/3	1/3	2

Lucro

Folga (em h) da oficina de alumínios

Lotes de janelas

Lotes de portas

No problema da Wyndor Glass

- Tabela inicial
 - □ Solução X₁=X₂=0
- 1ª Iteração
 - □ Solução X₁=0 X₂=6
- 2ª Iteração
 - □ Solução X₁=2 X₂=6

٧	X ₁	x ₂	S ₁	s_2	s_3	
Z	-3	-5	0	0	0	0
s ₁	1	0	1	0	0	4
S ₂	0	2	0	1	0	12
s_3	3	2	0	0	1	18

	٧	X ₁	X ₂	S ₁	s_2	s_3	
1	Z	-3	0	0	5/2	0	30
	S ₁	1	0	1	0	0	4
	X ₂	0	1	0	1/2	0	6
	s_3	3	0	0	-1	1	6

>	X ₁	X ₂	S ₁	s_2	s_3	
Z	0	0	0	3/2	1	36
S ₁	0	0	1	1/3	1/3	2
X_2	0	1	0	1/2	0	6
X ₁	1	0	0	-1/3	1/3	2

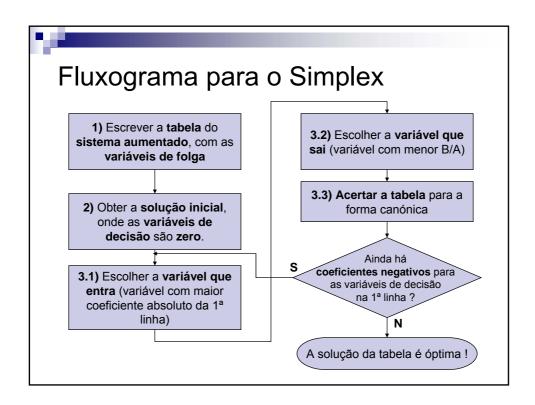
Revendo: 1,2,3,4,5

- 1 Escrever a tabela
 - □ Introduzir variáveis de folga, que passam a ser variáveis básicas da tabela
- 2 Escolher solução inicial
 - □ Implícita na escrita da tabela
 - □ Todas as variáveis de decisão são nulas, e as de folga são máximas

V 1.1. V.Lobo, EN / ISEGI, 2008

Revendo: 1,2,3,4,5

- 3 Melhorar
 - ☐ Escolher variável que entra (maior A)
 - Maior A... em valor absoluto... desde que seja negativo
 - □ Escolher variável que sai (menor B/A), e consequentemente qual a equação da qual a nova variável é base
 - □ Acertar a tabela
 - A nova variável base tem que ter coeficiente 1 na sua linha, e zero nas restantes ⇒ condensação de Gauss
- 4 Testar optimalidade
 - □ Existem mais A?
- 5 Repetir se necessário



Ponto da situação

- Temos uma receita para resolver problemas de qualquer tamanho
- Há casos particulares que veremos mais tarde:
 - □ Empates nas regras de entrada/saída
 - □ Ausência de variáveis de saída
 - □ Adaptação para problemas mais gerais (minimizações, problemas mistos, etc)

Resolver o modelo da Pisobom

- Variáveis de decisão:
 - Quantidade de angorá (100 m) $\square X_1$
 - $\square X_2$ Quantidade de caxemira (100 m)
- Função objectivo a maximizar:
 - \Box Z = 40 X₁ + 30 X₂
- Restrições
 - $\Box 3 X_1 + 4 X_2 \le 12$ (Máquina A)
 - $\Box 7 X_1 + 2 X_2 \le 14$ (Máquina B)

Casos especiais

- Empates na regra de entrada
- Empates na regra de saída
- Inexistência de variáveis para sair