Numbering Systems, Data Representation, Boolean Algebra, Basic Ciruits

1

Binary System

- Importance of the Binary System
- Easy physical implementation
- Implemented with hydraulic systems, electric systems, optical systems, etc.
- Conversions:
- DECIMAL \rightarrow BINARY

$$
26_{d}=11010_{b}
$$

- BINARY \rightarrow DECIMAL

$10100110_{b}=166_{d}$

2

- Bases that are powers of each other are easy to convert, since each digit of the higher power will only influence n digits of the other
- Octal $\quad 1$ octal digit $=3$ binary digits
- Hexadecimal 1 hexa digit $=4$ binary digits

$$
2 \mathrm{D} 3_{\mathrm{H}}=1011010011_{\mathrm{b}}=1323 \text { oct. }
$$

Advantages

- They use less digits to represent a number
- They are easier to read by human
- They are widely used

3

4

5

REPRESENTING NEGATIVE NUMBERS

Problem:

- How can you represent a negative number without using the "-" symbol (i.e.using only 0 and 1)
- Solution: use one of the POSTIONS to store the SIGN of the number
\square SIGN and MODULUS or magnitude (signed integer)
- The most significant bit is used for sign, the rest for magnitude
- Sign = $0=>$ Positive (most "normal" case)
- Sign = 1 => Negative
- Exemples:
$0100=4$
$1100=-4$
$0010=2$
$1011=-3$

MAGNITUDE
SIGN

6

7

2's COMPLEMENT

- 2's complement

- The MSB is used for sign (just as in SIGN+MODULUS)
- Conversion positive/negative and vice-versa uses the 2's complemt transformation
- Advantages
\rightarrow You can rapidly see of a number is positive or negative
\rightarrow There are no repeated numbers (no +0 and -0)
\rightarrow Number - 1 is right before 0 (good for counting)
\rightarrow Additions and subtractions can use the standard algorithms

Various algorithms for computing 2's complement

1) Subtract the positive number from $10000 \ldots$... $\left.2^{\mathrm{N}}\right)$
2) Start from the right, and leave all digits until the first " 1 ". Leave that one, but change all bits from there onwards
3) Complement all digits, and then sum 1.

8

\square Fixed point notation

- Equivalent to a "shifted" integer
- A pre-determined number of digits is used for the fractional part
- Example:
\rightarrow Given that a " 2 fractional digit" fixed point notation is used $\rightarrow 2.5=1010$
- Coefficients of the fractional part
- Negative power of the base
$-2^{-1}(=0.5), 2^{-2}(=0.25), \ldots$
\square For very large or very small numbers: floating point

9

11

Digital Systems

Numbering Systems, Data Representation, Boolean Algebra, Basic Ciruits V.2.4 V.Lobo 2021

19

21

Utility of Boolean Algebra for Digital Systems

- Let $U=\{0,1\}$
- The set U contains only 2 (binary) values
- We can implement this system with electrical, electronic, optical, hydraulic devices, amongst others !

Addition Operation

- Also know as logical OR
- Product Operation
- Also know as logical AND
- Complement Operation

- Simple NEGATION

$$
U=\{0,1\}
$$

+ = "OR" (logical OR)
. = "AND" (logical AND)
Complement = "NOT" (logical not)
may be written as $\operatorname{not}(x), \bar{x},!x, \sim x, \neg x$

THEOREMS

- 4 - Inverse law
- A. $\bar{A}=0$

$$
A+\bar{A}=1
$$

- 5 - Double complement law
$-\mathbf{A}=\overline{\overline{\mathbf{A}}}$
- 6 - Comutative law
- A.B = B.A
$A+B=B+A$
- 7 - Associative law
$-A . B \cdot C=(A . B) C=A .(B . C)$
$-A+B+C=(A+B)+C=A+(B+C)$
- 8 - DeMorgan's law
$\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
$\overline{A+B}=\bar{A} \cdot \bar{B}$

37

39

45

47

Characteristics of LOGICAL FAMILIES

- TTL
- Easy to build and use. Widely available,
- Robust and reliable
- Low cost
- Reasonable energy consumption
- 74xxyy and 54xxyy families
$\rightarrow 54 x x$ has military specifications: large range of operating temperatures/humidity/vibration conditios, pins optimized for Electro-Magnetic Compatibility
\rightarrow Variations 74S, 74LS , 74L , 74H, 74HCT (power, speed)
- CMOS, NMOS and PMOS
- Field effect transistors
- Very low consumption
- Slow and sensitive to static electiricity
- Flexible with power levels
- 40xx family

51

55

CANONICAL FORMS

- How can we identify lines in the truth table ?
- Each line is a PRODUCT of all free variables
- MINTERMS
- Products that include ALL FREE VARIABLES
- Correspond to lines in the truth table, numbered according to the binary code that the variables form
- To determine the binary code, affirmed variables are represented with " 1 ", and negated variables are represented with " 0 "
- Example: $A \bar{B} C D$ is numbered 1011 , i.e. eleven
- MAXTERMS
- Sums that include ALL FREE VARIABLES
- They are duals of the minterms (but are simpler if there are frew " 0 ")
$-\mathrm{M}_{\mathrm{i}} \rightarrow \mathrm{m}_{2}{ }^{\mathrm{n}}$-1-i

CANONICAL FORMS

- $1^{\text {st }}$ CANONICAL FORM
- Sum of minterms
- Example: XOR function

$$
\rightarrow \mathrm{XOR}(\mathrm{~A}, \mathrm{~B})=\boldsymbol{A} \cdot \bar{B}+\bar{A} \cdot B=m_{1}+m_{2}=\sum m_{(1,2)}
$$

- Exercises:
\rightarrow What is the truth table of the 3 -variable function $\sum \boldsymbol{m}_{(0,5,7)}$?
\rightarrow What is the $1^{\text {st }}$ canonical form of the 3 -variable OR function?
- $2^{\text {nd }}$ CANONICAL FORM
- Product of maxterms
- Example: XOR function

$$
\rightarrow \mathrm{XOR}(\mathrm{~A}, \mathrm{~B})=(\bar{A}+\bar{B}) \cdot(A+B)=M_{0}+M_{3}=\prod M_{(0,3)}
$$

- Exercises:
\rightarrow What is the truth table of the 3-variable function П $M_{(0,5,7)}$?
\rightarrow What is the $2^{\text {nd }}$ canonical form of the 3 -variable OR function?

Recipe for solving problems with combinatory circuits

1) Obtain a Boolean function that solves the problem:

- Using analytical methods (describe the problem with boolean logic)
- Specify the desired outputs in a truth table
\rightarrow Obtain the minterms/maxterms and you have the boolean

2) Simplify the Boolean function using

- Analytical manipulation of the expression
- Karnaugh Maps (Venn diagram based method)
- Quine-McCluscky or other mathematical optimization method

3) Implement the circuit (on discreet logic or programable logic devices)

- Choose the integrated circuits that have the desired gates
\rightarrow You may need to change the function obtained in 2 to minimize the number of integrated circuits used
- Draw the circuit layout (or use CAE software to do so)

61

63

65

67

69

71

Addition Circuits

- Combinatory circuits for additions/subtractions
- Additions and subtractions can also be made using sequential circuits

\square Half adder

- Adds two bits (without a carry input)
- Can only add numbers with 1 bit
- May generate a "carry" bit

A			B
Sum Carry			
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Addition of 2 bits as a logical function

Digital Systems

Numbering Systems, Data Representation, Boolean Algebra, Basic Ciruits

