Sequential Circuits

NovalMS, V.1.2 V.Lobo 2021

1

Basic memory element

- How can we memorize a bit using only gates?
- A pair of negations will maintain whatever state they have
- It is not easy to change the state only with negations
- S-R LATCH (Set-Reset)
- S (Set) input forces the output to 1
- R (Reset) input forces the output to 0
- 0

Can we describe a
SR LATCH
using truth tables?

Sequential Circuits

Description of sequential circuits

- Truth tables
- The PREVIOUS STATE is used as an input
- We may simplify the truth table, specifying the output as a function of the previous state

3

Description of sequential circuits

- Temporal diagrams
- Show the behaviour in time of the circuits when they receive a given input
- They do not define completely the behaviour of a circuit ! (just the behaviour to a PARTICULAR input)

4

Sequential Circuits

Descriptions of Sequential circuits

- Asynchronous circuits
- As soon as the inputs change, the outputs may change immediately
- They can be very fast, but are not (yet) used much, because they are difficult to design and have problems with "critical runs"
\rightarrow Promising future, as discussed in Proceedings of the IEEE, February 1999

Synchronous circuits

- There is synchronizing signal (called CLOCK) that regulates when transitions may occur
- There ONLY are transitions on the CLOCK EDGES
- In temporal diagrams we only need to analyze what happens in clock edges.
- The NEXT STATE is a function of what is present BEFORE the clock edge!
- After a CLK edge, where changes may occur, there is a "relaxation time" where changes will take place internally, and after they all stabilize, a new clock edge may occur. This limits the maximum speed.
- These are by far the most common circuits !

5

6

Sequential Circuits

NovalMS, V.1.2 V.Lobo 2021

7

8

Sequential Circuits

9

Sequential Circuits

Master-Slave FLIP-FLOP

- Memorize what happens when CLK is active, but only produce effects when the edge comes

- Simpler than the Edge-Triggered

- Composed of two latches in a row
- When one is "transparent", the other is "closed"
- There is never a direct path from input to output
- The first (Master) is connected to the input, and feeds its output to the second (Slave)
- It has " 1 's catching"
- "Catches" peaks

Sequential Circuits

NovalMS, V.1.2 V.Lobo 2021

Flip-Flops - Time issues

Sistemas Lógicos (3)
\square Flip-flops can react to ascending or descending edges (in
this latter case, there is a negation in the clock input)

- Propagation Delay 50\%
- Time between the clock edge and the change in the output
- May be different fot H-L and L-H
- Set-Up Time
- Hold Time

\square Rise Time
- Pulse Width

| With RC circuits and logical gates |
| :--- | :--- |
| - Easily adjusted |
| - Not very precise (they depend on the resistor and capacitor |
| tolerances, and temperature) |

Sequential Circuits

17

Integrated circuits for timers

555

- Very flexible and widely used timer
- May be used as monostable or clock generator
- Adjustable "Duty Cycle"
- Various clones, and integrated into other circuits
- Circuit:
- Pinout:

Sequential Circuits

Integrated Circuits for clock generation

\square Typical mountings for the 555
A) $\mathbf{5 0 \%}$ duty-cycle Clock $f=1 /(1,4 R C)$

B) Variable duty-cycle Clock $f=1,46 /((R a+2 R b) C)$ $d=R b /(R a+2 R b)$
C) Monostable
$\mathrm{T}_{\text {pulso }}=1,1 \mathrm{RC}$

Schmitt-Triggers

Sistemas Lógicos (3)

- May receive analog signals, but output digital
- Output has only 2 levels
- They are used to regenerate digital signals

- They have a hysteresis cycle:
- To go from 0 to 1 the signal has to be significantly high, but to go from 1 to 0 the signal has to be significantly low
- They eliminate "Cross-over noise"

Registers

- How can we store information that needs more than 1 bit?
- Use a set of Flip-Flops
- Some sort of ordering is necessary to organize the flip-flops (FF)
- Registers
- Basically, a collection of Flip-flops
- They differ in how data is LOADED into the flips-flops; how that data is available to be READ from the outside; and possibly how data is passed from one flip-flop to another.
- Parallel Load Registers
- Data is input and output in parallel
- Operations:
\rightarrow Parallel-in/Parallel-out

Sequential Circuits

NovalMS, V.1.2 V.Lobo 2021

23

Sequential Circuits

Ring Counter

- N flip-flops, with only one set at 1 while others are 0
- The active flip-flop passes it's " 1 " onto the next when the clock edge arrives
- It's a shift register with feedback from the last bit
- N flip-flops $\Rightarrow \mathbf{N}$ different states
- Example of a ring counter with 4 bits 0100
- Counting sequence: 0010

0001

26

Sequential Circuits

27

Asynchronous Binary Counter (ripple-mod 2 ${ }^{\text {n }}$

- The clock is not common to all FF
- The output of one flip-flip acts as clock for the next one
- There are slight delays between the Fli-flops
- They are easier to build
- They do not need external gates

Arbitrary modulus Binary Counter

\square Key idea \rightarrow Reset the counter before it finishes the natural cycle - Detect the first "unwanted" state, and force an asynchronous clear (reset) \rightarrow Use AND gates to detect the unwanted state \rightarrow The unwanted state will exist during a small peak

Sequential Circuits

Sequential Circuits

Counters - More complex devices

- 7250
- Digitally programable timer (0-99)
- Unit delay defined by a RC circuit (thus, "tuneable")
- May generate delays from micro-seconds to days

