
Página 1

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

11

Microprocessador 8085

V.Lobo @ EN

INTRODUCTION

 Intel 8080
– First commercial 8 bit microprocessor by Intel
– Successor to the first microprocessor in the world (the 4 bit 4004)

 Intel 8085
– Improved version of the 8080
– First microprocessor (mP) to have commercial success
– Used a lot because of it’s simple and “clean” architecture

 Basic Architecture
– 8 bit data bus
– 16 bit address bus

(64k address space)

 Precursor to 8086, 80286, 80386, 80486, Pentium,…..,Core i7…

8085

8 bit data bus

16 bit address bus

17 bit contol bus

22

Microprocessador 8085

V.Lobo @ EN

Internal Architecture
D7-D0

B1-DIRECTIONAL
DATA BUS

DATA BUS
BUFFER/LATCH

REGISTE
R

ARRAY

ACCUMULATOR
8

ACCUMULATOR
LATCH 8

INSTRUCTION
DECODER AND

MACHINE
CYCLE

ENCODING

INSTRUCTION
REGISTER 8

TEMP.
REG. 8

FLAG
FLIP-FLOPS 5

DECIMAL
ADJUST

ARITHMETI
C

LOGIC
UNIT
(ALU)

A15-A0
ADRESS BUS

MULTIPLEXER

W
TEMP. REG.

Z
TEMP. REG.

B
REG.

C
REG.

D
REG.

E
REG.

H
REG.

L
REG.

STACK POINTER

PROGRAM COUNTER

INCREMENTER/DECREMENTER
ADDRESS LATCH

ADDRESS BUFFER

88

8

8

8

8

8

8

16

16

16

16

R
EG

IS
TE

R
 S

EL
EC

T

8

TIMING
AND

CONTROL

DATA BUS
CONTROL

INTERRUPT
CONTROL

HOLD
CONTROL CLOCKS

WR IO/M INTA HOLD
ACK

HOLDINT x1 X2
RESET IN

(8 BIT)
INTERNAL DATA BUS

RD S0 S1 ALE CLK OUTRST & TRAP

SERIAL
PORT

SID SOD READY

RESET
OUT

1

2

Página 2

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

33

Microprocessador 8085

V.Lobo @ EN

Silicon implementation

 Number of transistors:
6000

 Initial manufacturing:
April 1974 (8080)

 Manufactures by Intel
and various other
companies under
licences (Siemens,
Philips, Texas, etc)

 Different models with
varying characteristics:

– Clock frequency
– Type of technology

(NMOS, CMOS, feature
width, etc)

– Type of encapsulation

44

Microprocessador 8085

V.Lobo @ EN

REGISTERS

 General use registers
– There is 1 privileged register, named ACCUMULATOR, that is

always used to store:
one of the arguments of arithmetic and logic operations
The result of arithmetic and logic operations

– There are 6 general use 8 bit registers, that are sometimes used in
pairs to “form 16 bit registers”

– One the register pairs (H and L, or High & Low) are used to
generate addresses. The datum contained in the memory position
whose address is stores in HL is sometimes treated as if if ware a
register (Register M), and is refered to as M or [HL]

A
B C
D
H L

E

Main memory
0000

FFFF

64k
(65536
memory
addresses)

M

3

4

Página 3

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

55

Microprocessador 8085

V.Lobo @ EN

SPECIAL PURPOSE REGISTERS
 Program Counter

– Contains the address of the next instructions that will be executed

 Stack Pointer
– Contains the address of the top of the stack (that is managed by

the mP itself)

 STACK
– Used to store data in a LIFO (Last In First Out) structure in the main

memory bank
– Just like a pile of books, where you can add books on top, or

remove them from the top
– You mas access the stack with two Instructions

PUSH - adds a datum (16 bits) to the stack
POP - removes a datum (16 bits) from the stack

Instructions:
PUSH BC PUSH DE PUSH HL PUSH PSW
POP BC POP DE POP HL POP PSW
LXI SP,(initial address of the stack)

66

Microprocessador 8085

V.Lobo @ EN

FLAGS

 There is a special register that records events that
happened in the ALU (the last operation by the mP)

 That register has 5 bits, or FLAGS

 (almost) ALL arithmetic and logical operations change
those flags

 Each bit of that flag may be questioned separately to
know if the last operation generated a carry, or was
Zero, etc…

 Flags of the 8085 mP:

Z S CY P AC

5

6

Página 4

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

77

Microprocessador 8085

V.Lobo @ EN

FLAGS

 Meaning of each flag:
– Z Zero

1 = The result of the last operation was ZERO
0 = The result of the last operation was NOT

– S Sign (same as the MSB, and assumes 2’s complement is being used)

1 = The result of the last operation was < 0

0 = The result of the last operation was  0
– CY Carry

1 = A carry was generated
0 = No carry was generated

– P Parity
1 = Even Parity
0 = Odd Parity

– AC AUXILARY CARRY
1 = A carry was generated in BCD
0 = No carry was generated in BCD

88

Microprocessador 8085

V.Lobo @ EN

INSTRUCTION SET

 O 8085 has many different types of instructions
– It was a CISC at its time (although now even RISC have more

instructions)
– Each instruction is a number, or a machine code

 To facilitate reading, each instruction is known by a
mnemonic that is related to its function

– Example: Instruction number 43H copies the contents of register E to
register B, and its mnemonic is “MOV B,E”

– A computer program written with mnemonics is said to be written in
Assembly Language, ou (incorrectly) Assembler.

 Assembly instruction can be divided in 4 main tasks:
– Move data
– Perform arithmetic and logic operations
– Flow Control (deciding which instruction is executed next)
– Other operations

7

8

Página 5

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

99

Microprocessador 8085

V.Lobo @ EN

 Addressing Modes
– There are various ways of specifying which datum should be used:

MOVING DATA

Argument passed
to the instructionAddressing mode name

Datum used

36Immediate

Direct, by register

Indirect, by register

Indirect, by address

Indexed

A

2000H

[HL]

Direct, by address

[3053H]

[HL+3] 1FFDH + 3

36

36

2000H

2000H

36

36

36

1010

Microprocessador 8085

V.Lobo @ EN

Moving data

 MOV r1,r2
– Move data (8 bits) from register r2 to register r1
Examples:
– MOV A,B ; puts in the Accumulator the contents of register B
– MOV H,D ; puts in register H the contents of register D

 MOV r1,M / MOV M,r1
– Moves data (8 bits) from the address POINTED TO by HL to register r1

and vice-versa
MOV M,A ; puts in the memory address pointed to by HL the contents of

the accumulator A

 LDAX rp / STAX rp (Load Acumulador x...)

– Moves to the Accumulator the content of the memory address pointed
to by rp (or vice-versa)

– STAX BC ; Stores in the memory address pointed to by registers B and
C the contents of the Accumulator

– LDAX HL ; equivalent to MOV A,M

9

10

Página 6

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

1111

Microprocessador 8085

V.Lobo @ EN

Moving data

 MVI r1, data(8bits) (move immediate)

– Moves to register r1 the data given.
– Ex: MVI A,00 ; puts in the accumulator the value 0

MVI B,A0H ; puts in B the value 160decimal

 LXI rp,data(16bits) (load pair immediate)

– Moves to register pair rp the data given.
– Ex: LXI BC,0000 ; puts in the register pair BC the value 0

LXI HL,3F00H ; puts in the register pair BC the value 3F00

 XCHG (exchange)

– Exchanges the contents of HL with the contents of DE

1212

Microprocessador 8085

V.Lobo @ EN

Moving data

 LDA addr (Load Accumulator)

– Moves data from a given address to the accumulator
– EX: LDA 1000 ; Loads the accumulator with the number

stored in memory address 1000

 STA addr (Store Accumulator)

– Moves data from the accumulator to a given address (ADDR)
– EX: STA FFFF ; Stores the content of the accumulator in the

memory address FFFF

 LHLD addr / SHLD addr (Load HL Direct/Store HL Direct))

– Moves data (16 bits) from address ADDR to the HL register pair
– EX: LHLD FFFF ; Loads HL with data from memory

address FFFF

11

12

Página 7

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

1313

Microprocessador 8085

V.Lobo @ EN

Arithmetic Operations

 ADD r / ADC r
– Add the contents of register r to the accumulator (with/CARRY)

 ADD M / ADC M
– Add the contents of register the memory address pointed to by HL

to the accumulator (with/CARRY)

 ADI data / ACI data (Add Immediate)
– Add the number given to the accumulator (with/CARRY)

MVI A, 255
MVI B,1
MVI C,2
ADD B
ADI 30
ADC C
What is the value of A now ?

Example

1414

Microprocessador 8085

V.Lobo @ EN

Arithmetic Operations

 SUB r / SBB r
– Subtract register r from the accumulator (W/Borrow)

 SUB M / SBB M
– Subtract the contents of memory (pointed by HL) from the

accumulator (W/Borrow)

 SUI data / SBI data
– Subtract the given data from the accumulator (W/Borrow)

MVI A,10
SUI 03
MVI B,AFH
MVI C,10H
ADD B
SBB C
What is the value of A now ?

Example:

13

14

Página 8

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

1515

Microprocessador 8085

V.Lobo @ EN

Arithmetic Operations

 DAD rp
– Add rp to HL, leaving the result in HL DAD BC

 DAA
– Correct the addition/subtraction in BCD DAA

 INR r
– Increment register r INR B

 INR M
– Increment the contents of the memory position

point to by HL INR M

 INX rp
– Increment the register pair rp (increment eXtended) INX BC
– Register pairs (BC, DE, ou HL) behave as a single 16 bit number

1616

Microprocessador 8085

V.Lobo @ EN

Arithmetic Operations

 DCR r
– Decrement register r

 DCR M
– Decrement the contents of the memory address pointed to by HL

 DCX rp
– Decrement the contents of register pair rp

MVI H,00H
MVI L,FFH
INX H
MVI L,FF
INR L
DCR M
DCR H
What are the contentes of H and L ?

Exemples

15

16

Página 9

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

1717

Microprocessador 8085

V.Lobo @ EN

Logic Operations

 ANA r
– Logic AND between the accumulator and register r

 ANA M
– Logic AND between the accumulator and the memory address

pointed to by HL

 ANI data 8 (and Immediate)
– Logic AND between the accumulator and datum given

MVI A,10H
MVI B,FFH
MVI C,10H
CMP C
ANA B
CMP B
What are the contentes of A,B,C,
and the FLAGS ?

Exemples

1818

Microprocessador 8085

V.Lobo @ EN

Logic Operations

 ORA r
– Logic OR between the accumulator and register r

 ORA M
– Logic OR between the accumulator and the memory address

pointed to by HL

 ORI data 8 (or Immediate)
– Logic OR between the accumulator and datum given

 XRA r / XRA M / XRI I
– Logic XOR between the accumulator and register r/ Memory/datum

MVI A,F8H
ANI 08H
ORI 02
What are the contentes of A ?

17

18

Página 10

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

1919

Microprocessador 8085

V.Lobo @ EN

Arithmetic Operations

 Comparison operations
– Subtracts the given number from the accumulator, but DOES NOT

store the result.
– Changes the FLAGS, that may later be used to take decisions like

“IF A=B THEN…”

 CMP r
– Compare the accumulator with register r (compute A-r)

 CMP M
– Compare the accumulator with the memory address pointed to by

HL

 CPI data8
– Compare the accumulator with the given data

2020

Microprocessador 8085

V.Lobo @ EN

Flow control operations

 Jumps
– The next instruction to be executed will not be the next one in the list,

but another, stored at a given address

 JMP addr 16
– Jumps to the given address

 JNZ addr 16
– Jumps to the given address if the last operation did NOT result in zero,

i.e., if Z=0 (the accumulator 0)

 JZ addr16
– Jumps to the given address if the last operation resulted in zero, i.e., if

Z=1 (the accumulator = 0)

 JNC addr 16
 JC addr 16

– Jumps to the given address if the last operation resulted in a CARRY/
NOT CARRY (CY=0 / CY=1

19

20

Página 11

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

2121

Microprocessador 8085

V.Lobo @ EN

Flow control operations

 JPE addr 16
– Jumps if P=1 (parity even)

 JPO addr 16
– Jumps if P=0 (parity odd)

 JP addr 16
– Jumps if S=0 (positive)

 JM addr 16
– Jumps if S=1 (minus)

 PCHL
– Puts in PC the contentes of HL Jumps to the address contained in HL.
– Acts like “JMP M”

2222

Microprocessador 8085

V.Lobo @ EN

Rotations

 RLC
– Rotate (acumulator) left to

carry

 RRC
– Rotate right to carry

 RAL
– Rotate left through carry

 RAR
– Rotate right trough carry

LSBMSBCY

LSBMSBCY

LSBMSBCY

LSBMSBCY

21

22

Página 12

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

2323

Microprocessador 8085

V.Lobo @ EN

Negations and “Set” operations

 CMA
– Complements the accumulator

 CMC
– Complements the carry flag

 STC
– Set carry flag (puts cy=1)

2424

Microprocessador 8085

V.Lobo @ EN

Methodology for Assembly Programming

 DEFINE OBJECTIVES CLEARLY
– Undersand and make explicit what operations the program must

do. Make explicit what are the INPUTS and the OUTPUTS that it must
produce.

 DRAW THE BLOCK DIAGRAM or STATE DIAGRAM
– Define the basic sub-tasks, how they interact, and how the

program progresses through them.

 DEFINE THE DATA STRUCTURE
– Decide WHAT DATAis necessary, WHERE they are stored, in what

FORMAT, etc.
– Define how the mP registers are used.
– Write down which variables are stores were (the data lexicon) ,

and draw a MEMORY MAP, showing where data is stores, where the
program is kept, etc.

23

24

Página 13

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

2525

Microprocessador 8085

V.Lobo @ EN

Methodology for Assembly Programming

 DRAW A DETAILED FLUXOGRAM
– For each block, draw a separate fluxogram

 WRITE THE CODE
– Write the code in mnemonics, using a table where you specify

WHERE the opcode is stored, what the (numeric) machine code
is, and how many addresses are used up by each instruction

Mnemonics

MVI A,FFH
MVI B,02H
SUB B
DCR A

Address

4000H
4002H
4004H
4005H

Código

XX XX
XX XX
XX
XX

N.Bytes

2
2
1
1

EXAMPLE: Compare two bytes that are in consecutive addresses. If they are equal, return
A=1, else make A=2. Start the code in 6000H and compare address 2000H with the next.

Comments

Initialize A (hight)
Initialize B (range)

Find the difference
Stay within range

2626

Microprocessador 8085

V.Lobo @ EN

Examples:

 Write assembly programs to:

 Compare two bytes that are on
consecutive addresses. If they are equal,
make A=0, if the first if larger make A=1,
and if it is smaller make A=2,. Assume that
the first number is at address 3010H

 Sum 2 numbers each one with 24 bits (3
bytes). These numbers are at the addresses
stored in register pairs HL and DE. The result
should be left at the addresses original
pointed to by HL

25

26

Página 14

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

2727

Microprocessador 8085

V.Lobo @ EN

SUB - ROUTINES

 Objective
– Divide the program into small, modular, and simple tasks
– Create “procedures” that may be “called” from several different

places, avoiding duplications

 Advantages
– Compact code

If you need to do the same thing in different places, you “WRITE
ONCE – USE MANY” times.

– Modular code
Allows structured programming. Safer and simpler from a

software engineering perspective
– Less errors

Sub-routines can be tested independently, and “double
checked” before being integrated into the system

2828

Microprocessador 8085

V.Lobo @ EN

CALL/RET INSTRUCTIONS

 CALL addr 16
– Calls a sub-routine
– Stores the address contained in PC in the Stack, and jumps the the

address given

 RET
– Returns from a sub-routine
– Gets an address from the stack (whatever two bytes are there), and

jumps to that address

Endrç. Program

0231 MOV M,B
CALL 0522
MOV A,B

0522 MVI A,10
ADD B
RET

X
SP

X
02
32

SP

PC(0235) STACK
0522 PC

STACK PC

Operations Stack

27

28

Página 15

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

2929

Microprocessador 8085

V.Lobo @ EN

Conditional Calls

 Calls are made or not depending on the state of the
flags

– CZ / CNZ - Call if Zero / if Not Zero
– CM / CP - Call is Minus / if Positive
– CPE / CPO - Call if Parity Even / if Parity Odd
– CC / CNC - Call if Carry / if Not Carry

 Exemplo

LDA 2000
ANA A
CP 2A00
STA 2000

CMA ; complements A
INR A ; sums 1
RET

Convert the data from [2000]
Into negative if it is positive

Routine that receives a number in the
accumulator, and computes
it’s 2’s complement

3030

Microprocessador 8085

V.Lobo @ EN

Passing Parameters

 1 – In the REGISTERS
– Limited number of parameters
– Fast and efficient

 2 – In FIXED ADDRESSES in main memory
– Forces a permanent occupation of memory addresses
– Slow data passing
– Not relocatable
– Doesn’t allow recursion

 3 – In the STACK
– Unlimited number of parameters
– Does not interfere with the memory allocation of the rest of the

program
– Several conventions for putting/removing data from the stack

29

30

Página 16

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

3131

Microprocessador 8085

V.Lobo @ EN

Examples of parameter passing

 Write a routine to sum two bytes, and write a program
that calls that routine, using the follwing methods

– Passing the parameters in the registers:
The routine receives the data in registers B and C, and returns the

value in the Accumulator
– Passing the parameters in fixed addresses

The routine receives the data in addresses 20B0H and 20B1H, and
leaves the return value in 20B2H

– Passing the Parameters in the Stack
Receiving in the stack the data, and putting the return value also

in the stack (using both the “C” and the “Pascal” convention)
Receiving in the stack the address of the data and the address

where the return value should be stored (and removing those
pointers from the stack)

DOCUMENTE ESTAS ROTINAS !

3232

Microprocessador 8085

V.Lobo @ EN

Passing Paramaters to Routines

 “C” type parameter passing:
– The routine that puts the data in the Stack is responsible for

removing it after returning from the call
– Allows the number of real parameters to be less than the number of

formal parameters
– Each routine leaves the Stack EXACTLY in the same position where

it received it
– Parameters are put in the Stack “from right to left” (i.e.”backwards”

so that the first parameter is the last one to go to the stack

 “Pascal” type parameter passing:
– The routine that is called is responsible for removing the data from

the Stack
– There has to be a tight coupling between the routine that calls and

the routine that is called to keep the stack balanced
– Parameters may be put “from left to right”

31

32

Página 17

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

3333

Microprocessador 8085

V.Lobo @ EN

Documenting Sub-Routines

 The INTERFACE of the routine with the rest of the
system must be very well documented

 The documentation must include:
– What are the parameters ?
– How are they passed ?
– Which registers are changed ?
– What memory addresses are used (if any) ?

 Use (and “abuse” of) comments

 See the examples of the SDK85 monitor routines

3434

Microprocessador 8085

V.Lobo @ EN

SOFTWARE INTERRUPTS

 RST (restart) Instructions

 They are CALLs to pre-defines addresses

 In the 8085 you only have 8: RST0 to RST7

 For each RST you have 8 available addresses bedore
the next RST

– Generally the interrupt is “vectored” to another address, i.e. the
available addresses are used to issue a JMP to the location where
the routine is actually implemented

 Jump address of the RST = 8 x number of the RST
– RST0  CALL 0000
– RST1  CALL 0008
– RST2  CALL 0010

33

34

Página 18

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

3535

Microprocessador 8085

V.Lobo @ EN

Advantages of using Software Interrupts

 The calls are independent of the implementation,
i.e., you don’t have to know were the routines are in
memory…

 Interrupts can be easily re-vectored
– We may change the routines without changing the programs that

call them

 The call occupies only 1 byte

 They are usually used for system calls

 Normally, the RST addresses are in ROM, and some
are re-vectored to RAM

 RST 0 normally resets the system

3636

Microprocessador 8085

V.Lobo @ EN

HARDWARE INTERRUPTS

 Objectives
– Forces the mP to act in response to an external (that will trigger the

execution of a given program)
– The mP does not waste time verifying the state of the system,

because events will make themselves known through the interrupts
– Urgent events are dealt with minimum delay

 “Perfect” synchronism with external events
– Wait loops and software based synchronism tend to have large

latency.
– The response to interrupts are (AMOST) immediate.

 “Wakes up” the mP (from “crashes”, wait loops, etc.)

 Two types of interrupts: Direct and Indirect
– Some are direct to mP pins, other require external circuits

35

36

Página 19

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

3737

Microprocessador 8085

V.Lobo @ EN

Direct interrupts

 TRAP and RST pins
– When these pins are actuated, they force the mP to execute a RST

instruction
– A CALL insctruction is executed to a given address : addr =

(number of the Rst) x 8
– There 4 such pins:

Pin Address Type of actuation

RST 5.5 2CH by level (“1”)

RST 6.5 34H by level (“1”)

RST 7.5 3CH by flank (0->1) (it has a FF)

TRAP (RST 4.5) 24 H by maintaining a “1”

3838

Microprocessador 8085

V.Lobo @ EN

Indirect Interrupts (through INTR/INTA)

 INTR Pin
– Na external device signals the mP by actuating the INTR pin
– When it’s ready to process the interrupt, the mP responds by actuating

the INTA (interrupt acknowledge) pin.
– When the INTA is generated the uP will generate a “opfetch cycle”

(read an opcode from memory) but without putting an address in the
bus
Whatever generated the INTR must provide the opcode

8085

INTR

INTA

D0-D7

8

Interrupt Request

Interrupt Acknowledge

Something has to send the
opcode of the instrucution
that will be executed

Example:
….

37

38

Página 20

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

3939

Microprocessador 8085

V.Lobo @ EN

Simple Example

 Increment register B when an external signal is
activated

– The signal may come com a switch that sends a short impulse
when it is flipped

8085

Rst 5.5Interruptor

Hardware
(Physical connections)

Software

INR B
RET

002C
002D

address content

inst.1
inst.2
inst.3
...
...
...

main program Interrupt routine

NOTE: As we shall later see, this
routine has some practical
problems that would not allow it to
work properly

4040

Microprocessador 8085

V.Lobo @ EN

Interrupt Mask

 RSTs may be “masked”, that is, disabled by software
– Prevents the mP from being interrupted when it executes critical

code segments
– Prevents a interrupt routine from interrupting itself
– Allows the mP to temporarily ignore a given peripheral

 The TRAP interrupt is not maskable (NMI)
– It is always active
– It is used many times as a WATCH-DOG to avoid “deep crashes”

8085 Monostable
or CounterTrap

It you don’t reset the counter regularly
it will RESET the microprocessor

39

40

Página 21

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

4141

Microprocessador 8085

V.Lobo @ EN

Interrupt Mask

 You may switch on/of all interrupts at the the same
time (except the NMI)

– DI - Disable Interrupts
 All interrupt requests are ignored

– EI - Enable Interrupts
Switches the interrupts back on

 You may activate only certain interrupts:
– There is a register (called INTERRUPT MASK) that may be

written/read so as to select which interrupts are active

 To avoid a interrupt interrupting itself, when it is
called the mP “automatically” perform a DI. Thus to
allow other interrupts to occur a EI must be explicitly
performed.

– EI only produces results 1 instruction later (to allow the RET)

4242

Microprocessador 8085

V.Lobo @ EN

SIM and RIM Instructions

 SIM - Set Interrupt Mask
– Puts the contents of the Accumulator in the interrupt mask

 RIM - Read Interrupt Mask
– Puts the contents of the interrupt mask in the Accumulator

? ? N.U. 7.5 MSE 7.5 6.5 5.5

Masks (1=Disable)

Mask Set Enable (1=Enable Interrupts)
Reset of the Flip-flop of RST 7.5

? 7.5 6.5 5.5 IE 7.5 6.5 5.5

Masks (1=Disable)

Interrupt Enable (1=Enable Interrupts)

Pending interrupts (1=Interrupt pending)

41

42

Página 22

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

4343

Microprocessador 8085

V.Lobo @ EN

Priorities

 If more than one interrupt is activated at the same
time, there is a priority list amogst them:

 TRAP has the highest priority (and is “non-maskable”)

 RST 7.5 has higher priority than 6.6, that has higher
priority than 5.5

 INTR has the lowest priority

 There are more elaborate methods to deal with
interrupt prioritization, some supporting “full-nesting”,
and a commonly used support chip (8259) to do so.

– Improved versions of the 8259 are included as modules in most
modern support chipsets.

4444

Microprocessador 8085

V.Lobo @ EN

Interrupt Handlers

 They are asynchronous routines
– It is not possible to know at which point in the code they will be

called. It is not possible to synchronize these routines with the rest of
the program.

– Thus.. We have to store the context:
PC is stored automatically by the “call” instruction
FLAGS & ACC have to be stored almost always (with PUSH PSW)
Other regs only if they are used

 For convenience they are usually revectored from
their original addresses

– The interrupt vector does not have space to store all the code
– The address of the interrupt vector are usually in ROM

43

44

Página 23

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

4545

Microprocessador 8085

V.Lobo @ EN

Serial I/O with the 8085

 In the 8085 the RIM and SIM instructions also control the
serial input/output pins

– The pins are named SOD (Serial Output Data) and SID (Serial Input Data)
– SIM - Send data – Sends a bit from the accumulator to SOD
– RIM - Read data – Reads the bit that is in SID to the accumulator

SID 7.5 6.5 5.5 IE 7.5 6.5 5.5

RIM

SOD SOE N.U. 7.5 MSE 7.5 6.5 5.5

Serial output Enable

Bit to send to SODBit read from SID

SIM

4646

Microprocessador 8085

V.Lobo @ EN

Parallel I/O with the 8085

 Input/Output (I/O) address space
– It is an address space similar to the memory, but with only 265

addresses
– It is generated with addresses of only 8 bits
– It is used to perform I/O with peripheral devices (or controllers)

without wasting memory addresses

 IN addr8
– Reads the I/O port addr8 into the Accumulator

 OUT addr8
– Writes the Accumulator to I/O port addr8

MVI A,23H ; puts number 23H in Acc
OUT 20 ; sends it to the I/O port

45

46

Página 24

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

4747

Microprocessador 8085

V.Lobo @ EN

HLT (HALT) Instruction

 Put the microprocessor in a “wait” or “idle” state
– Stops all processing
– It is only possible to exit this state if there is an interrupt request
– The response to a interrupt request is extremely fast, because the

microprocessor does not have wait for anything (it is idle)

Example of a passive wait:

L1: HLT ; Waits for an interrupt
JMP L1 ; Return to the wait

4848

Microprocessador 8085

V.Lobo @ EN

Hardware and external connections

X1  1 40  Vcc (+5V)
X2  2 39  Hold

Reset Out  3 38  Hlda
SOD  4 37  Clock out

SID  5 36  ~Reset In
TRAP  6 35  Ready

RST 7.5  7 34  IO/~M
RST 6.5  8 33  S1
RST 5.5  9 32  ~RD

INTR  10 31  ~WR
~INTA  11 30  ALE

AD0  12 29  S0
AD1  13 28  A15
AD2  14 27  A14
AD3  15 26  A13
AD4  16 25  A12
AD5  17 24  A11
AD6  18 23  A19
AD7  19 22  A9
Vss  20 21  A8

 There are many
different
“packaging”options”

 The most common is
DIP-40 (Dual In-line
Packaging) with TTL
levels

 Pinout of the 8085 in
DIP-40:

47

48

Página 25

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

4949

Microprocessador 8085

V.Lobo @ EN

Databus Multiplexing

 To minimize the number of pins in integrated circuit,
there are pins that sometimes are used for DATA, and
other times are used for ADDRESSES

– In the beginning of the read/write cycle, they are used to transmit
the ADDRESSes

– At the end of the read/write cycle, they are used for DATA
– A pulse is generated in the ALE pin (Address Latch Enable) to

separate the two types of signals

8085

A8-A15

AD0-AD7

Latch

A0-A7

ALE D0-D7

Addr Data

ALE

5050

Microprocessador 8085

V.Lobo @ EN

Timing/reset/interrupt pins

 X1, X2
– Connected to an external crystal to generate (in the 8085 itself)

system clock (typical setup)
– X1 may also be connected to an external Clock Generator

 CLK out
– System Clock (available for the peripherial devices)

 ~Reset In
– If kept at “0” during 4 clock cycles forces a re-initialization

 Reset out
– Used to general a reset signal for the remaining components of the

system.

 TRAP, RST x.5, INTR, INTA
– Interrupt pins

49

50

Página 26

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

5151

Microprocessador 8085

V.Lobo @ EN

Outros pinos

 Vcc e Vss
– Power source (5V dc) and ground (0V)

 SID, SOD
– Serial communication pins

 ~RD, ~WR, IO/~M
– Read and Write pins with the indication if is to memory or IO

devices

 S0, S1
– Status (to see the BUS CYCLE of the microprocessor, in case a Bus

Arbitration System is implemented)

5252

Microprocessador 8085

V.Lobo @ EN

HOLD and HLDA

 Sometimes it is necessary for another device to use
the bus that in normally controlled by the mP, without
its interference

– Multi-processor system
– System peripherlas / Intelligent sub-systems (for DMA, for example)

 Operation
– When someone wants the but, is generates a HOLD request to the mP
– As soon as the mP can liberate the bus, it puts all the bus pins in tri-

state and activates HLDA (Hold Acknowledge), until the requesting
party lowers the request.

8085

HOLD

HLDA

51

52

Página 27

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

5353

Microprocessador 8085

V.Lobo @ EN

Timing and bus cycles

 All timings are specified in the datasheet
– “Compatible” integrated circuits: Respect the mP specifications
– Simplified timing specifications:

Consider only what has to happen in each “half-cycle”

Memory Read Cycle (MR)

5454

Microprocessador 8085

V.Lobo @ EN

Timing and bus cycles

 “OPFETCH” cycle
– Go get an OPCODE, and execute a “simple” instruction (i.e. a 1

bus cycle instruction, or the first part of a multi-cycle instruction)

53

54

Página 28

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

5555

Microprocessador 8085

V.Lobo @ EN

Timing and bus cycles

 T cycles
– Clock cycles
– Basic operating frequency of the microprocessor

 M cycles
– Machine cycles
– Groups of clock cycles that do something “with a meaning”
– They form the “standard cycles” from the BUS point of view
– There are only 7 machine cycyles

OPFETCH - Go get an OPCODE (execute it if possible)
Memory Read - Get data from memory
Memory Write - Store data in memory
 IO Read - Read an IO port
 IO Write - Write to an IO port
 Interrupt Ack - Wait for and OPCODE provided by who requested and

Interrupt
Bus Idle - Do nothing (the microprocessor is working internally, with

no need for using the but, or in WAIT state)
 Machine Instruction

– Has one or more M cycles

5656

Microprocessador 8085

V.Lobo @ EN

Timing and bus cycles

 MVI A,32H (executed from address 2000H)

00H; low-
order Add

3E; opcode

T1 T2 T3 T4 T1 T2 T3

20H; high-order address

01H; low-
order Add

32H; Data

Unspecified 20H; High-order address

Status IO/M=0,S1=1,S0=1; opcode fetch Status IO/M=0,S1=1,S0=0; data read

RD

ALE

AD7-AD0

A15-A8

M1 (Opcode-fetch) M2 (Memory Read)

55

56

Página 29

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

5757

Microprocessador 8085

V.Lobo @ EN

Timing and bus cycles

 “OUT xx” instruction
– 3 M cycles: Opefetch, Memory read, IO write

OPFETCH Mem Read IO Write

5858

Microprocessador 8085

V.Lobo @ EN

Summary of Bus Cycles

 T and M Cycles T

 There are only 7 machine (M) cycles in the BUS:
– OF, MR, MW, IOR, IOW, INA, BI

 Operação de Leitura de um dado em memória (MR)
– Diagrama temporal completo, e simplificado.
– Presença de Wait States

 Operação de Escrita de um dado (MW)

 Diferenças entre OpFetch (OF), InterruptAck (INA), e
MemRead

 Diferenças entre ciclos de I/O (IOW, IOR) e memória

 Ciclo Bus Idle (BI)

 Diagrama de Estados do 8085

57

58

Página 30

8085 Microprocessor
NovaIMS, V.2.0 V.Lobo 2021

5959

Microprocessador 8085

V.Lobo @ EN

State diagram of the 8085

59

