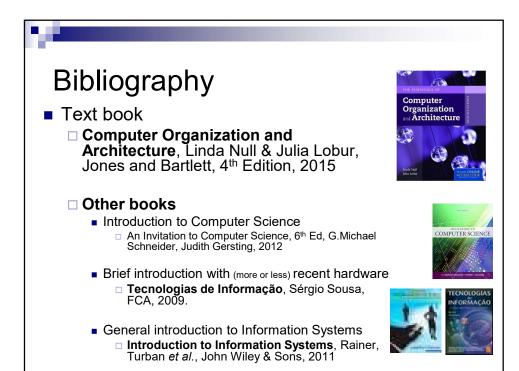


Syllabus (overview)
 1. Introduction to computing machines 2. Data representation 3. Boolean Algebra 4. Digital Systems 5. Memory systems 6. Computer Architecture 7. Microprocessors 8. Peripherals 9. Operating Systems, programming
•

V 1.3, V.Lobo, EN/ISEGI, 2017

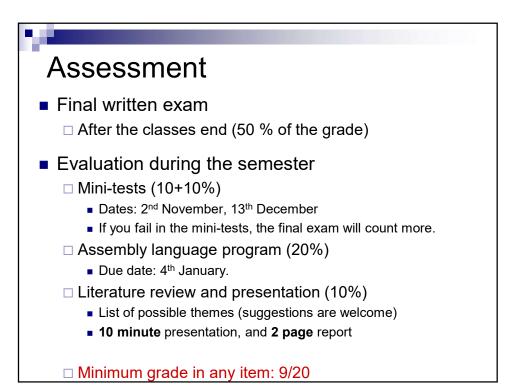
Why is it important?


- Because we want to understand the world around us!
- Because only by understanding how computing machines work can we understand:
 - ☐ Their **limitations**
 - □ Their capabilities
 - ☐ How to choose them, to buy them, and to use them properly
- Because it is part of the STI *curriculum* ...
 - ☐ You need to know this to get your degree...

Tough issues (or not...)

- All information can be described in 0s and 1s
 - ☐ The complete works of William Shakespeare; Michelangelo's Sistine Chapel; Handel's Messiah; your mother's face and voice...
- There is a mathematical formulation specifically for working with 0 a 1 (Boolean Algebra)
- You can build a physical device that can perform the AND, OR, and NOT logical operations
- All information processing can be made using combinations of AND, OR, and NOT

V 1.3, V.Lobo, EN/ISEGI, 2017



Bibliography (more detailed)

- Digital Systems and Microprocessors
 - □ Digital Fundamentals (10th Ed), Floyd, Prentice-Hall, 2010
 - ☐ Sistemas Digitais, Padilha, McGraw-Hill
- Operating Systems
 - □ Operating Systems (4th Ed), Tannenbaum, Prentice-Hall, 2014
 - ☐ Sistemas Operativos, Alves Marques et al., FCA, 2009.

V 1.3, V.Lobo, EN/ISEGI, 2017

Objectives of the presentation

- Search for relevant information on Information Technologies
 - □ Learn about scientific on-line repositories
 - ☐ Get to know the most relevant publications
- Learn how to assimilate the relevant information
- Learn how to present it oraly, using visual aids
- Learn how write a short technical report

V 1.3, V.Lobo, EN/ISEGI, 2017

Themes for the presentations

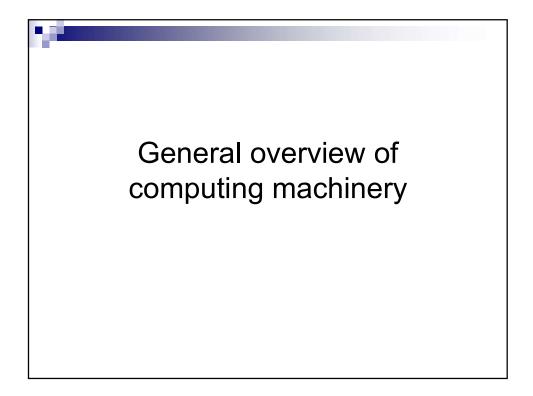
- Choose a paper from an ACM or IEEE scientific jornal
 - ☐ Go to the ACM and IEEE websites, and explore! (using the B-ON access to full papers)
- Examples of "general purpose" journals:

Communications of the ACM

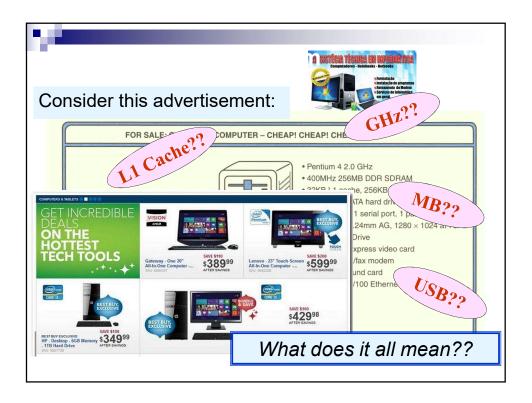
Proceedings df the IEEE

IEEE Spectrum

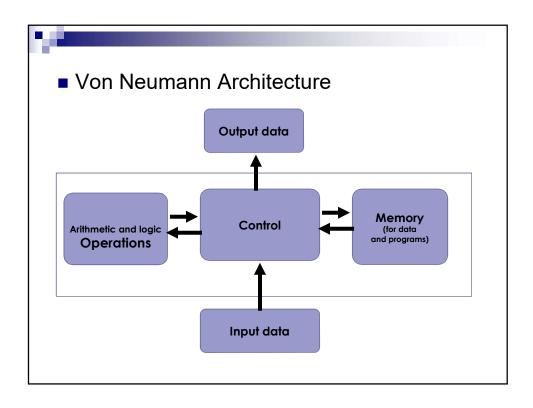
How to choose the theme

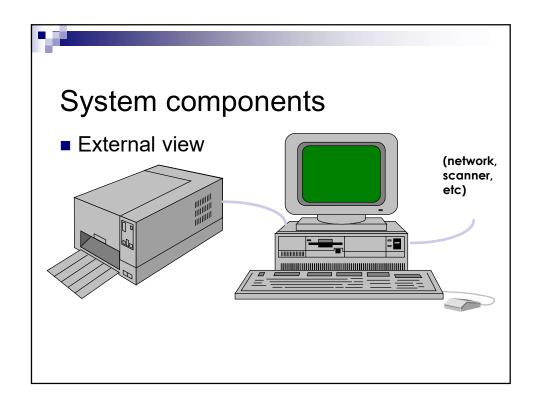

- Send na email to the teacher:
 - ☐ Use your novaims email
 - □ Start the SUBJECT with HSTI
 - ☐ Start the email with your NAME and STUDENT NUMBER
 - ☐ State the name of the paper/article, the complete reference of the Journal where you found it
 - ☐ The PDF of the paper in attachment
 - ☐ Send this information 1 WEEK before your presentation
 - ☐ You shall receive an email **accepting** your choice **or** suggesting you **choose another** theme
 - □ Paper/articles from other technical magazines/journals can be accepted if truly interesting
 - ☐ The exam will have questions regarding the presentations

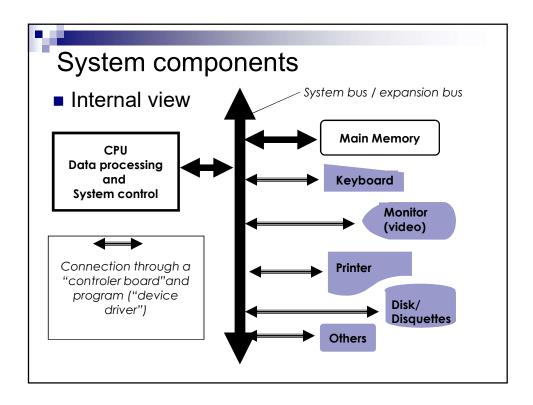
Character of the succession	f 1 1 - 1 !
Examples of themes	for the presentation
•	•
Tecnologias de discos rígidos	Processadores ARM
Tecnologias de memórias flash	Processador Intel ATOM
Tecnologia de fabrico de circuitos impressos	Processadores Transmeta com code morphing
Tecnologia de fabrico de circuitos integrados	Microcontroladores PIC
Tecnologia de imressoras	Sistemas de visualização 3D
Tecnologia de impressoras (2D)	Sistema operativo Symbian
Tecnologia de impressoras (3D)	Sistema operativo Google Chrome
Tecnologia de Écrãs tácteis	Sistema operativo BeOS
Processador multi-core da PS3	Sistema operativo OpenVMS
Protocolo de comunicação Bluetooth	Sistema operativo OS/2
Protocolo de comunicação HDMI	Sistema operativo Minix
Protocolo de comunicação USB	Sistema operativo Anderoid
Protocolo de comunicação RS232	Sistema operativo iOS
Protocolo de comunicação CAN	Kits de microprocessadores Arduino
Protocolo de comunicação FireWire	Kits de microprocessadores TINI
Protocolo de comunicação SATA	Kits de microprocessadores Rabbit
Discos Blu-Ray	Kits com FPGA
Formatos de discos ópticos CDs/DVDs	Tablets
Super computadores	Computação Ubíqua
Vantagens e desvantagens de network-attached storage	Computação na "Cloud"
Computação quântica	Computação em automóveis
Computação optica	Computação para domótica
Quintas de servidores e gestão de energia	Vírus Informáticos
Blade PCs	Evolução dos sistemas de visualização: CRT a LCD e touch
Placas gráficas topo de gama	Interfaces homem/máquina com MS-Kinect
Processadores de topo de gama	Interfaces homem/máquina com feedback vibratório
Processadores gráficos	Interfaces homem/máquina com seguimento da retina
Processadores MIPS	Interfaces homem/máquina 3D

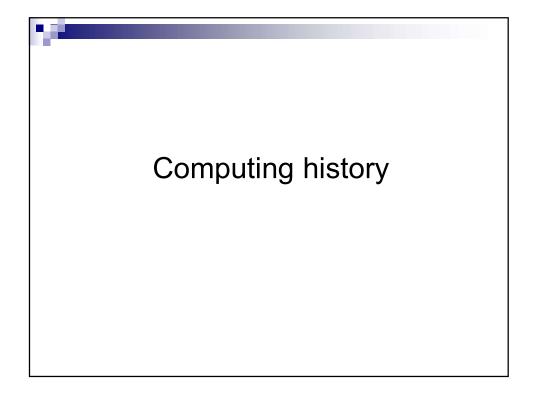

D	ate				
D	ata		_	_	
ט		s for the presenta	ıti∩n	$\cap f \vee$	our Literature
	alc.	o for the presente		Oi y	our Enterature
K C	vi o				
16	VIE	W (dates were randomly se	eletecte	ed)	
		,		,	
Date	Number	Name	15/nov	2016644	Sara Moiteiro Campos
26/set	2016656	Salvador Maria Silveira Paio Pinheiro Rosado	15/nov	2016635	David Miguel Farias Agostinho
26/set	2015542	Ana Teresa de Jesus Figueiredo Batista	21/nov	2016671	Gonçalo Correia Silvestre
26/set	2016665	Ricardo Jorge Rodrigues Gaião	21/nov		Diana Ribeiro Pereira
27/set	2013478	Nuno Gonçalo Rosmaninho Neves Almeida	21/nov	20170657	Marcin Rafal Lewandowski
27/set	2015402	Vera Sycheva	22/nov	2016650	Duarte Miguel Pimenta Martins
3/out	2012284	Duarte Maria Syder Terenas Ribeiro De Queiroz	22/nov	2016645	Pedro Bernardo Resina Baptista Barreiros Carm
3/out	2014526	Sérgio Miguel de Freitas Macedo	28/nov	2016659	João Filipe Mendes Gil Correia Figueiredo
3/out		Valtteri livari Myllylä	28/nov	2014528	Sonica Chunilal Samgi
10/out	2016630	Ricardo José da Graça Vieira	28/nov	2016774	João Maria Lima Vicente Seabra Santos
10/out	2014501	Mário Rui Tavares Godinho Rodrigues	29/nov	2015515	Pedro Levi Batista Narciso da Silva
10/out	2016637	Ana Sofia Alcobia Jeremias Afonso de Oliveira	29/nov	2016632	Liliana Daniela Carreiras Dias
11/out	20170646	Mihály Ádám Ulveczki	5/dez	2016658	André Nicolau Queda
11/out	20170628	Cansu Türkmen	5/dez	2016636	Diogo Milho Costa
24/out	2016765	Clara Gil da Silva Pereira	5/dez	2016664	Frederica Fernandes dos Reis
24/out	2013482	João da Silva Marques	6/dez	20170629	Hasan Mahir Ates
24/out	2016639	Lara Barradas Teixeira Garrucho de Oliveira	6/dez	2016669	Fábio Miguel Domingues da Silva
25/out	2016660	Tomás Filipe Vicente Amaro	12/dez	2014458	Cláudia Moniz de Sousa
25/out	2014489	José Carlos Bate Eusèbio Sequeira	12/dez		Rodrigo Conde Azevedo
31/out	2016662	Miguel Alexandre Abreu dos Santos	12/dez	2016642	Gonçalo Miguel Courela Vieira Dias
31/out	2016661	Andreia Baulane Candido de Figueiredo	13/dez	2016762	Carolina Waked Saad
31/out	2016634	Sara Alexandra Conceição Guerreiro	13/dez	20170626	Ahmet Emre Kiratli
7/nov	2016643	Pedro Miguel Machado Urbano	18/dez		Miguel da Silva Simão
7/nov	2015579	Bianca Oana Ilinca	18/dez		Amilson Neto Sousa Pontes
7/nov	2016653	Mariana Carvalho Freire	18/dez		Joana Filipa Correia Afonso
14/nov	2013524	João Carlos Vicente Colaço de Abreu Pimenta			Irem Sezer
14/nov	2016647	Pedro Nuno Ângelo Mota	18/dez		Muhammed Ömer Taylan
	2016640	Rita Nunes Pombo Marcelino	18/dez	2016638	Catarina Sofia Boto das Neves

Hardware e Software das Tecnologias de Informação V1.3, V.Lobo, EN/ISEGI, 2017






V 1.3, V.Lobo, EN/ISEGI, 2017



Basic components of a computer Processor Unit Process data, make computations Memory Unit Store data, store instructions Input/Output (I/O) Units Communicate with the outside world

V 1.3. V.Lobo, EN/ISEGI, 2017

- Before computers
 - □ Abacus
 - □ Pascal Machines and Leibniz Machines
 - Sums and subtractions with gear wheels
 - Artillery computers
 - □ Babbage Machines
 - Logarithm tables for navigation and "modern mechanical computer"
 - □ Hollerith Machines
 - Card readers and rudimentary information processing
 - □ Dedicated analog machines

First Generation computers: Vacuum Tube Computers (1945 - 1953)

- Pre-war pioneers
 - □ Theorectical work
 - "On computable numbers" by Alan Turing
 - Theory for "Switching circuits"
 - □ Atanasoff-Berry Computer (1937 1938) solved systems of linear equations.

V 1.3. V.Lobo, EN/ISEGI, 2017

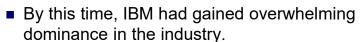
First Generation computers: Vacuum Tube Computers (1945 - 1953)

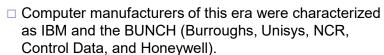
- 2nd World War efforts
 - □ Electronic Numerical Integrator and Computer (ENIAC)
 - John Mauchly and J. Presper Eckert
 - University of Pennsylvania, 1946
 - ☐ The ENIAC was the first *general-purpose* computer
 - □ Colossus
 - Bletchley Park, UK
- Post war efforts
 - ☐ First commercial applications by UNIVAC and IBM

Second Generation:

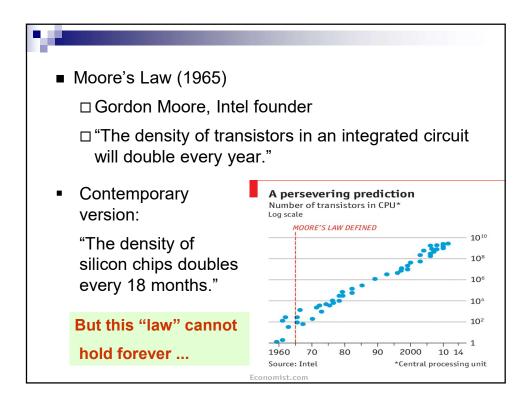
Transistorized Computers (1954 - 1965)

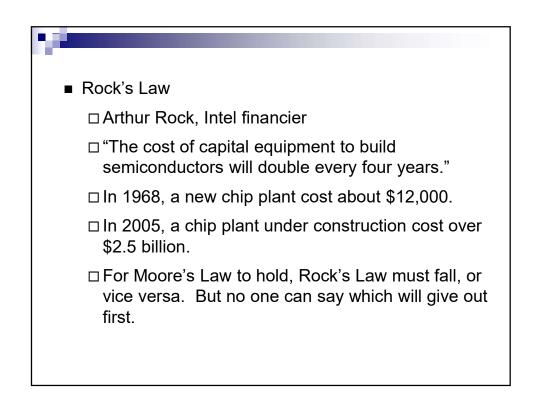
- □ IBM 7094 (scientific) and 1401 (business)
- □ Digital Equipment Corporation (DEC) PDP-1
- □ Univac 1100
- □ Control Data Corporation 1604.
- □... and many others.

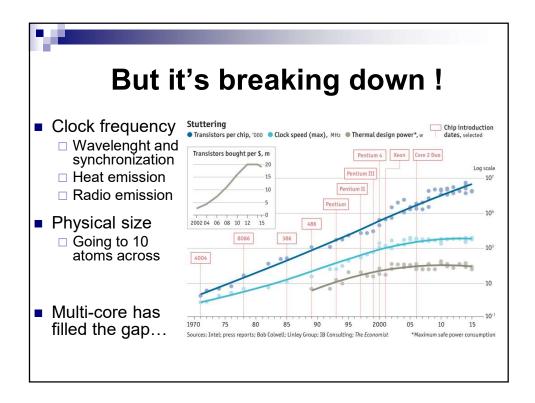

These systems had few architectural similarities.

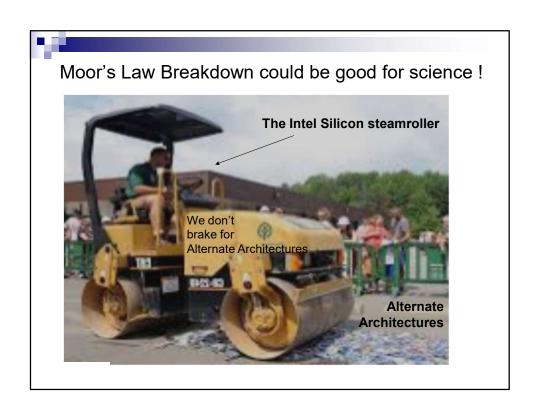

V 1.3, V.Lobo, EN/ISEGI, 2017

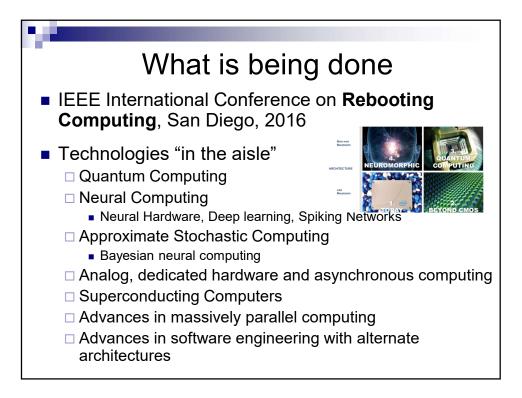
Third Generation: Integrated Circuit Computers (1965-1980)

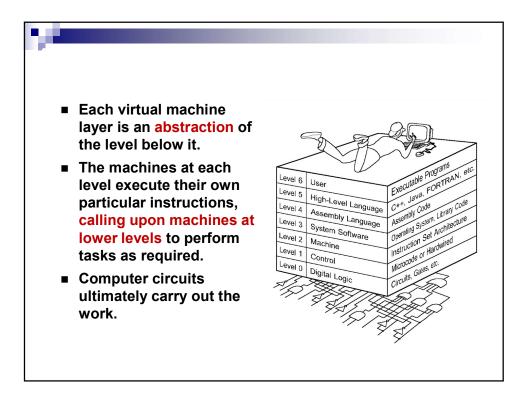

- Widespread industrial use
 - □ IBM 360
 - □ DEC PDP-8 and PDP-11
 - □ Cray-1 supercomputer
 - □ . . . and many others.

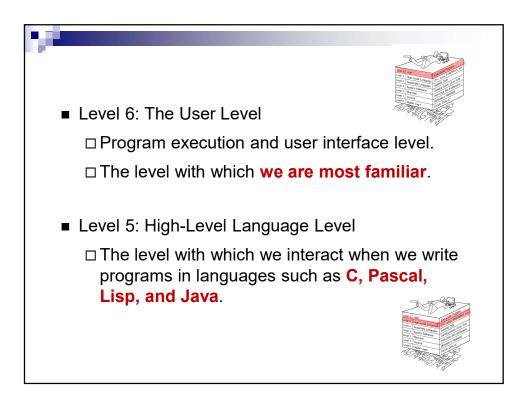


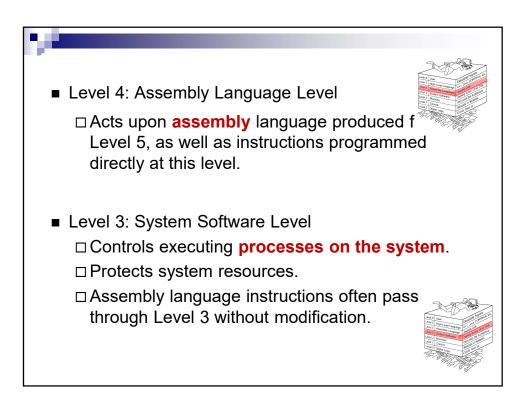


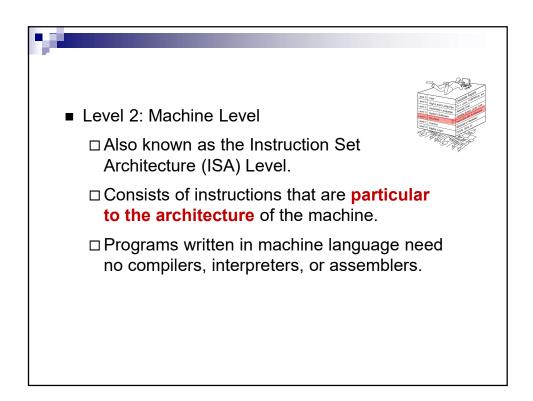


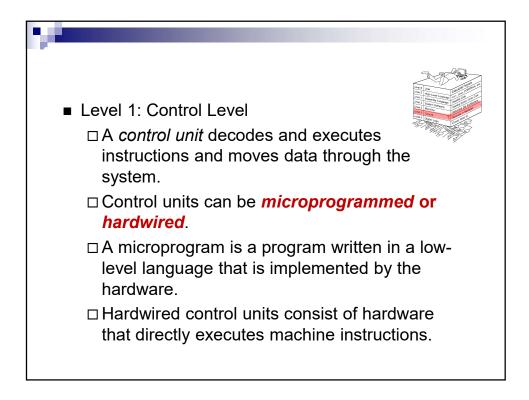

- The Fourth Generation: VLSI Computers (1980 ????)
 - □ Very large scale integrated circuits (VLSI) have more than 10,000 components per chip.
 - □ Enabled the creation of microprocessors.
 - ☐ The first was the 4-bit Intel 4004.
 - □ Later versions, such as the 8080, 8086, and 8088 spawned the idea of "personal computing."
- Next?
 - ☐ Massively parallel computers, Quantum computing?

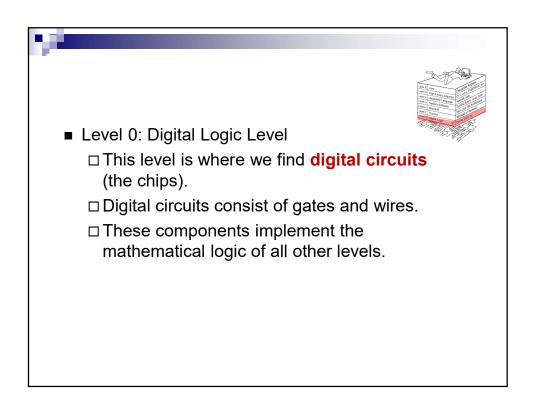




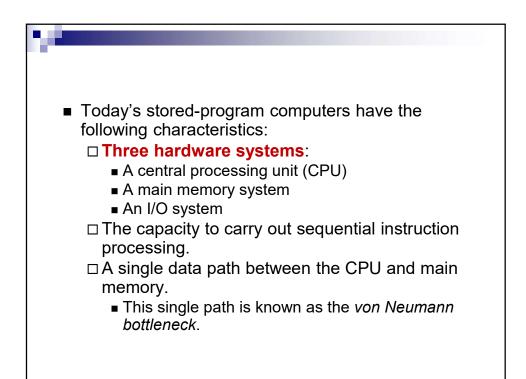


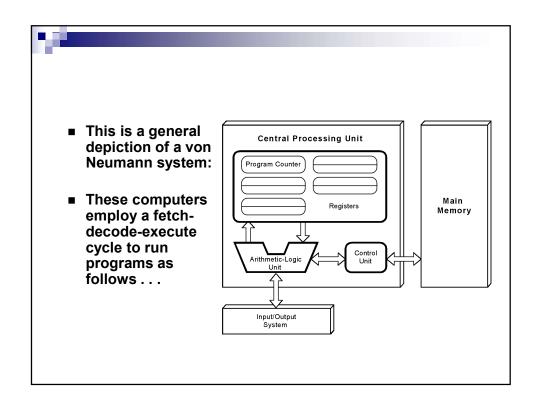


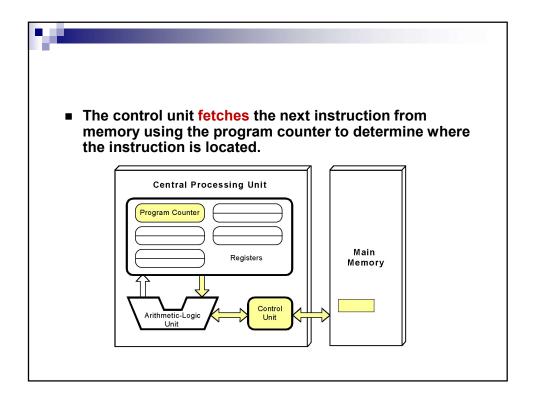

- Computers consist of many things besides chips.
- Before a computer can do anything worthwhile, it must also use software.
- Writing complex programs requires a "divide and conquer" approach, where each program module solves a smaller problem.
- Complex computer systems employ a similar technique through a series of virtual machine layers.

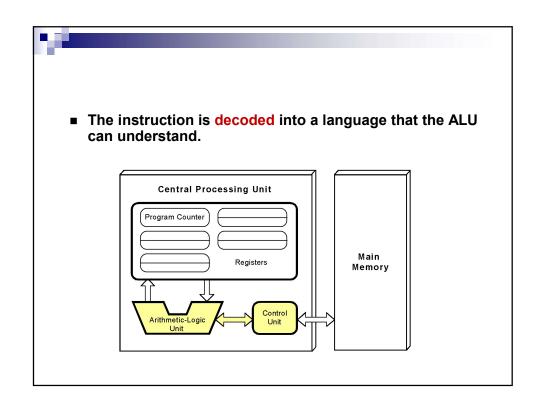


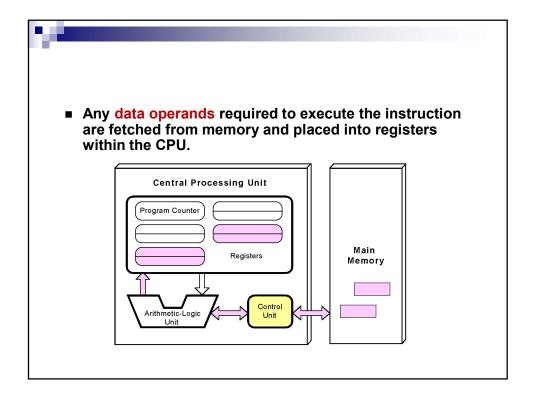
V 1.3. V.Lobo, EN/ISEGI, 2017

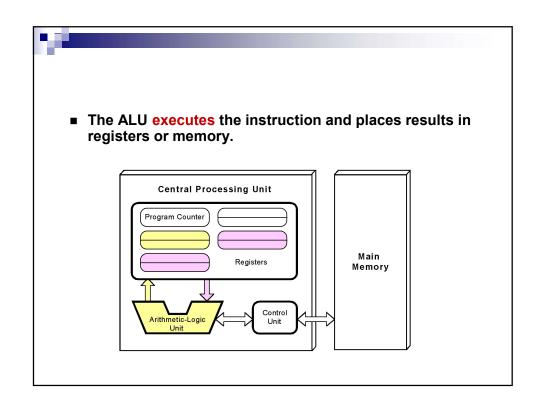



- On the ENIAC, all programming was done at the digital logic level.
- Programming the computer involved moving plugs and wires.
- A different hardware configuration was needed to solve every unique problem type.


Configuring the ENIAC to solve a "simple" problem required many days labor by skilled technicians.




- Inventors of the ENIAC, John Mauchley and J. Presper Eckert, conceived of a computer that could store instructions in memory.
- The invention of this idea has since been ascribed to a mathematician, John von Neumann, who was a contemporary of Mauchley and Eckert.
- Stored-program computers have become known as von Neumann Architecture systems.



- Conventional stored-program computers have undergone many incremental improvements over the years.
- These improvements include adding specialized buses, floating-point units, and cache memories, to name only a few.
- But enormous improvements in computational power require departure from the classic von Neumann architecture.
- Adding processors is one approach.

- In the late 1960s, high-performance computer systems were equipped with dual processors to increase computational throughput.
- In the 1970s supercomputer systems were introduced with 32 processors.
- Supercomputers with 1,000 processors were built in the 1980s.
- In 1999, IBM announced its Blue Gene system containing over 1 million processors.

- Parallel processing is only one method of providing increased computational power.
- More radical systems have reinvented the fundamental concepts of computation.
 - □ These advanced systems include neural hardware computers, genetic computers, quantum computers, dataflow systems,
 - ☐ At this point, it is unclear whether any of these systems will provide the basis for the next generation of computers.

- This chapter has given you an overview of the subject of computer architecture.
- You should now be sufficiently familiar with general system structure to guide your studies throughout the remainder of this course.
- Subsequent chapters will explore many of these topics in great detail.