Hardware \& Software for Information Technology Practical exercises (Batch 2)

Information Management School

1) We will soon celebrate the "armistice day" that ended the First World War, on $11 / 11 / 1918$. Write that date in binary, octal, and hexadecimal

In Binary: \qquad In Octal: \qquad In Hexadecimal: \qquad
2) Represent the numbers $+128,1,+12$ and -12 , if possible, in natural binary, sign and magnitude, two's complement, and BCD, using in all cases 8 bits.

	+128	1	+12	-12
Natural Binary				
Sign and magnitude				
Two's Complement				
BCD				

3) Perform the following operations in binary:

$$
0100011+0010001 \quad 1011 \times 101 \quad 01000-00010
$$

4) Assuming that your computer uses ASCII, and 8 bit words, use the table shown to determine how the next "NovaIMS" is stored in memory. Show the result in binary and in hexadecimal

ANSWER: \qquad

0		16		32		48	0	64	@	80	P	96		112	p
1		17		33	!	49	1	65	A	81	Q	97	a	113	q
2		18	DC2	34	"	50	2	66	B	82	R	98	b	114	r
3		19	DC3	35	\#	51	3	67	C	83	S	99	c	115	s
4		20	DC4	36	\$	52	4	68	D	84	T	100	d	116	\dagger
5		21		37	\%	53	5	69	E	85	U	101	e	117	U
6		22		38	\&	54	6	70	F	86	v	102	f	118	v
7	BEL	23		39	-	55	7	71	G	87	W	103	g	119	w
8	BS	24		40	(56	8	72	H	88	X	104	h	120	x
9		25		41)	57	9	73	1	89	Y	105	i	121	y
10	LF	26		42	*	58	:	74	J	90	Z	106	j	122	z
11		27	ESC	43	+	59	;	75	K	91	[107	k	123	\{
12	FF	28		44		60	<	76	L	92	1	108	1	124	\|
13	CR	29		45	-	61	=	77	M	93	,	109	m	125	\}
14	So	30		46	.	62	>	78	N	94	\wedge	110	n	126	\sim
15	SI	31		47	/	63	?	79	\bigcirc	95	-	111	-	127	

4) Simplify the Boolean expression $S=A B \bar{C}+A B C+(C A \bar{C})$
5) What is the Boolean function implemented by each of the following logical gates:

