

Mais outro exemplo

- Coloração de um grafo
 - □ Um grafo é definido por um conjunto de nós, alguns dos quais estão ligados entre si através de arcos. Dois nós ligados por um arco são designados por adjacentes. O problema da coloração de um grafo é atribuir cores a cada um dos nós de tal modo que dois nós adjacentes não tenham a mesma cor.
 - □ "O objectivo é encontrar o número mínimo de cores capazes de colorir um grafo."

Mais exemplos

"0-1 Knapsack problem"

Um conjunto de "n" itens deve ser empacotado numa mochila com capacidade de C unidades. Existem vi unidades de cada item "i" e usa c_i unidades de capacidade. Determine o subconjunto I de items que podem ser empacotados de modo a maximizar

tal que

náximo
$$\sum_{i \in I} v_i$$

$$\sum_{i \in I} c_i \leq C$$

Uma nova terminologia

Estado

- → Solução
- Conjunto dos descendentes
- → Vizinhança
- Espaço de estados
- → Espaço de soluções

Codificação dos estados e operadores

- Domínios em ℜn
 - □ Codificação: vector com um ponto em \Re^n
 - □ Cálculo dos descendentes
 - Orientada: Método do gradiente
 - Não orientada: Adicionar vector aleatório por exemplo gaussiano
- Domínios simbólicos
- Problema das N-rainhas
 - □ Exemplos de codificação Vector de inteiros de 1 a N sem repetições
 - □ Exemplo do operador
 - Mudar duas das posições seleccionados aleatoriamente

Método do gradiente

■ Seja uma função f(x₁, ..., xₙ) derivável.

$$X = X_0 \pm \eta \nabla f(X)|_{X = X_0}$$

O mínimo de $f(x_1, ..., x_n)$ O máximo de $f(x_1, ..., x_n)$ é dado por

$$\begin{cases} x_i^{t+1} = x_i^t - \eta \frac{\partial f(X)}{\partial x_i} \bigg|_{X = X^t} \\ i = 1, \dots, n \land t = 0, \dots, T \end{cases} X = X^t$$

$$\begin{cases} x_i^{t+1} = x_i^t + \eta \frac{\partial f(X)}{\partial x_i} \bigg|_{X = X^t} \\ i = 1, \dots, n \land t = 0, \dots, T \end{cases}$$

$$\text{Matemática!!!}$$

Método do Gradiente

Problema: maximizar f(X) em que f(X) é derivável

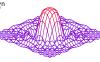
Seleccionar uma solução inicial $X_0 \in \Re^n$

$$X = X_0 + \eta \nabla f(X)|_{X = X_0}$$

se $f(X) > f(X_0)$ então $X_0 = X$ até critério de paragem

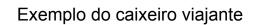
 X_0 é a solução.

repita

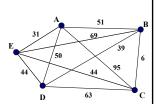


/ 3.0 V Lobo EN/ISEGI 2005

$\begin{array}{l} \textbf{Hill-Climbing} \\ \\ \textbf{Problema: maximizar } f(s) \\ \textbf{Seleccionar uma solução inicial } s_0 \in S \\ \textbf{repita} \\ \textbf{Seleccionar aleatoriamente } s \in N(s_0) \\ */ \\ \textbf{se } f(s) > f(s_0) \\ \textbf{então } s_0 = s; \textbf{Contador } = 0; \\ \textbf{senão Contador } = \textbf{Contador } + 1 \\ \textbf{até critério de paragem} \\ s_0 \notin \textbf{a solução}. \\ \end{array}$



- Consideremos o espaço de soluções representados pela sequência de 6 letras, em que só a primeira e a última são repetidas.
- O conjunto de vizinhança definida pela troca de duas letras
- Considere o ponto inicial ABCDEA



Solução

ADBCEA ou AECBDA

Problemas com o Hill-Climbing

- Pára nas seguintes situações
 - Máximos locais
 - □Planaltos
 - □ Arestas.

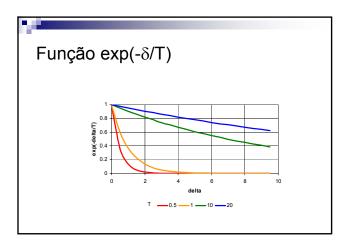
Kirkpatrick (1983)

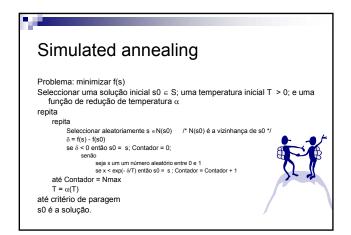
"When optimising a very large system (i.e. a system with many degrees of freedom), instead of "always" going downhill, try to go downhill "most of the time".

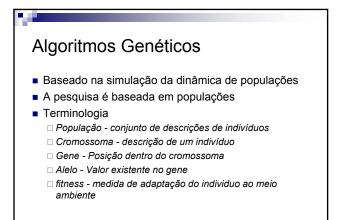
Annealing

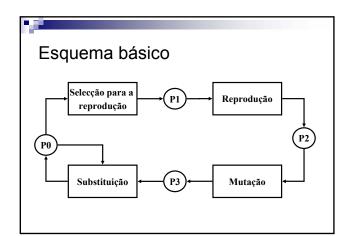
- Na física da matéria condensada refere-se como "annealing" o processo que se segue:
 - Um sólido num banho quente é aquecido, aumentando a temperatura até um valor máximo. A essa temperatura, todo o material encontra-se na fase líquida e as partículas arruma-se aleatoriamente
 - A temperatura do banho quente é arrefecida suavemente, permitindo que todas as partículas se arrumem num estado "ground" que corresponde ao estado de menor energia dessa estrutura.

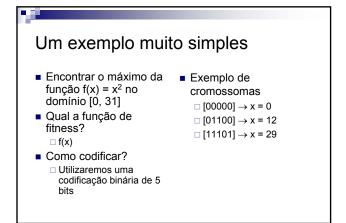
Algoritmo de Metropolis (1953) Desenvolvido para simular a evolução de um sistema físico quente que tende para o estado de equilíbrio térmico. ■ Em cada passo do algoritmo, um átomo do sistema é sujeito a um pequeno deslocamento aleatório. ■ Calcula-se a variação ∆E da energia do sistema. Se ΔE < 0 o deslocamento é aceite. Se não o deslocamento só será</p> aceite com uma probabilidade onde T é a temperatura $p(\Delta E) = e^{-T}$







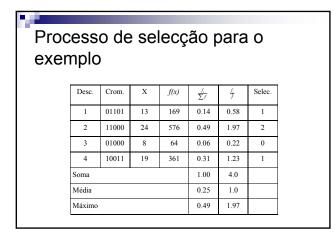


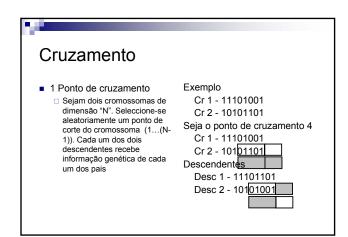


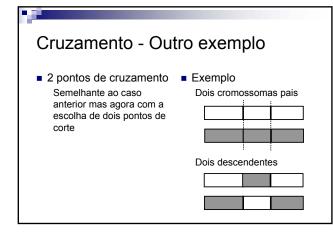
V 3.0, V.Lobo, EN/ISEGI, 2005

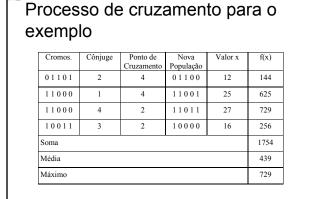
Operadores Selecção para reprodução Mutação □ Uniforme Depende do problema □ Roleta □ Inversão □ Integral □ Troca de dois genes □ Torneio Substituição ■ Reprodução □ Completa Depende do problema □ Parcial com selecção □ Cruzamento 1 ponto Uniforme □ Cruzamento de n pontos Roleta ■ Torneio

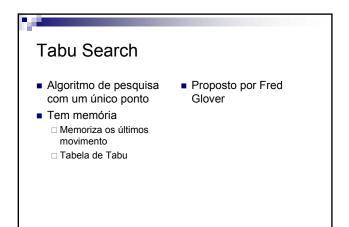
Selecção para a reprodução Roleta A hipótese de um □ Escolha aleatória e indivíduo ser directamente proporcional ao seleccionado para a seu fitness Integral reprodução é função do □ Respeita a muito rigidamente seu fitness o fitness relativo Torneio Dois indivíduos seleccionados aleatoriamente disputam um torneio. O melhor passa.

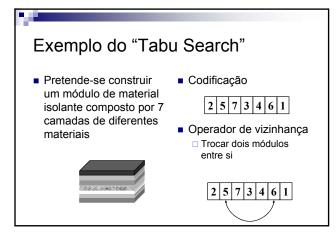


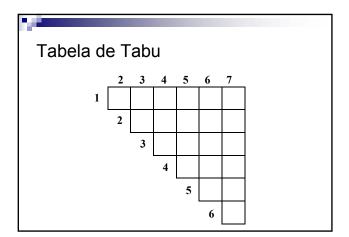


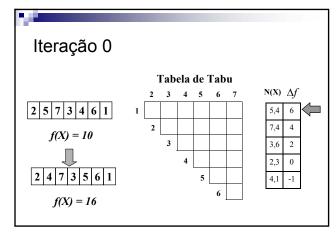


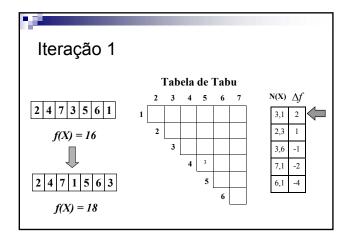


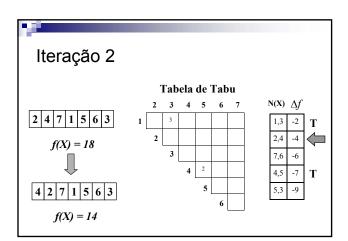


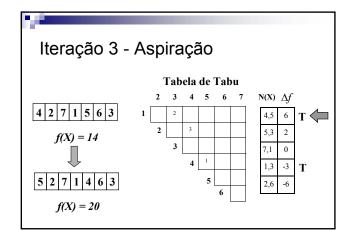


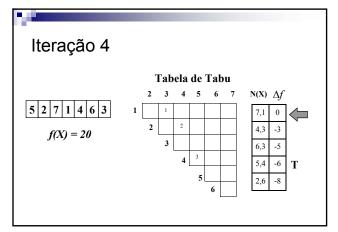












Bibliografia

- Colin R, Reeves, Modern Heuristic Techniques for Combinatorial Problems, McGraw-Hill
- David E. Goldberg, Genetic Algorithms in search Optimization & Machine Learning, Addison Wesley