Ver o conteúdo principal

Docentes

Biografia

Roberto Henriques é atualmente Professor Associado da NOVA Information Management School da Universidade NOVA de Lisboa, onde é subdiretor para o Ensino e Assuntos Pedagógicos. É diretor do Mestrado em Ciência de Dados e Análises Avançadas. Possui um Ph.D. em Gestão da Informação (NOVA), é mestre em Ciência e Sistemas de Informação Geográfica e licenciado em Engenharia Biofísica. O interesse da sua pesquisa inclui a análise de dados e sistemas de apoio à decisão usando inteligência artificial e machine Learning. O seu trabalho tem sido publicado em várias revistas e conferências internacionais de elevada qualidade e reputação. Tem ainda gerido e participado em inúmeros projetos de transferência de conhecimento e inovação em diversas áreas como saúde, marketing e CRM, entre outras.

Publicações Cientificas

Hajek, P., & Henriques, R. (2024)

Predicting M&A targets using news sentiment and topic detection. Technological Forecasting and Social Change, 201, 1-12. Article 123270. https://doi.org/10.1016/j.techfore.2024.123270

Pesovski, I., Santos, R. M., Henriques, R., & Trajkovik, V. (2024)

Generative AI for Customizable Learning Experiences. Sustainability, 16(7), 1-23. Article 3034. https://doi.org/10.3390/su16073034

Sousa, J., & Henriques, R. (2024)

Intersecting reinforcement learning and deep factor methods for optimizing locality and globality in forecasting: A review. Engineering Applications Of Artificial Intelligence, 133, Part B, 1-25. Article 108082. https://doi.org/10.1016/j.engappai.2024.108082

Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2024)

ChatGPT in exam rooms: preliminary insights into student performance with and without AI assistance. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th  International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 5908-5914). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1416

Santos, R., & Henriques, R. (2024)

Using early clickstream data to identify at-risk students in higher education: an LSTM-based approach. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th  International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 6216-6225). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1471

Santos, R., Pesovski, I., Henriques, R., & Trajkovik, V. (2024)

Predicting bootcamp success: using regression to leverage preparatory course data for tech career transitions. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th  International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 6181-6190). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1465

Somers, C., Feenan, D., Fitzgerald, D., Henriques, R., Martignoni, M., Parletta, D. A., Cibin, E., Chis, A. E., & González-Vélez, H. (2024)

Systematic Needs Analysis of Advanced Digital Skills for Postgraduate Computing Education: The DIGITAL4Business Case. In A. M. Olney, I-A. Chounta, Z. Liu, O. C. Santos, & I. I. Bittencourt (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky: 25th  International Conference, AIED 2024, Recife, Brazil, July 8–12, 2024, Proceedings, Part 1 (Vol. 1, pp. 179-191). (Communications in Computer and Information Science; Vol. 2150). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-64315-6_14

Barsalou, M., Saraiva, P. M., & Henriques, R. (2023)

Exploring Exploratory Data Analysis: An Empirical Test of Run Chart Utility. Management Systems in Production Engineering, 31(4), 442-448. https://doi.org/10.2478/mspe-2023-0050

Elbawab, M., & Henriques, R. (2023)

Machine Learning applied to student attentiveness detection: Using emotional and non-emotional measures. Education and Information Technologies, 28(12), 15717–15737. https://doi.org/10.1007/s10639-023-11814-5

Henriques, R., & Pinto, L. (2023)

A novel evaluation framework for recommender systems in big data environments. Expert Systems with Applications, 231, 1-13. [120659]. https://doi.org/10.1016/j.eswa.2023.120659

Jacob, D., & Henriques, R. (2023)

Educational Data Mining to Predict Bachelors Students’ Success. Emerging Science Journal, 7(Special Issue, "Current Issues, Trends, and New Ideas in Education"), 159-171. https://doi.org/10.28991/ESJ-2023-SIED2-013

Oliveira, M., Seringa, J., Pinto, F. J., Henriques, R., & Magalhães, T. (2023)

Machine learning prediction of mortality in Acute Myocardial Infarction. BMC Medical Informatics and Decision Making, 23(1), 1-16. [70]. https://doi.org/10.1186/s12911-023-02168-6

Pina, A. F., Meneses, M. J., Sousa-Lima, I., Henriques, R., Raposo, J. F., & Macedo, M. P. (2023)

Big data and machine learning to tackle diabetes management. European Journal Of Clinical Investigation, 53 (1), e13890. https://doi.org/10.1111/eci.13890

Santos, R. M., & Henriques, R. (2023)

Accurate, timely, and portable: Course-agnostic early prediction of student performance from LMS logs. Computers and Education: Artificial Intelligence, 5, 1-15. [100175]. https://doi.org/10.1016/j.caeai.2023.100175

Santos, R., & Henriques, R. (2023)

Decoding Student Success in Higher Education: A Comparative Study on Learning Strategies of Undergraduate and Graduate Students. Studia Paedagogica, 28(3), [59]-87. https://doi.org/10.5817/sp2023-3-3

Victorino, G., Coelho, P. S., & Henriques, R. (2023)

The Value of Design Thinking for PhD Students: A Retrospective Longitudinal Study. Emerging Science Journal, 7(Special Issue: Trends, and New Ideas in Education), 16-31. https://doi.org/10.28991/ESJ-2023-SIED2-02

Guan, Y., Fernandes, M. L. D. C., & Henriques, R. (2023)

Comparing The Effectiveness Of Face-To-Face, Emergency Remote, And Hybrid Teaching Approaches: A Case Study Of An Information Management School. In L. Gómez Chova, C. González Martínez, & J. Lees (Eds.), 15th  International Conference on Education and New Learning Technologies July 3rd  -5th  , 2023 Palma, Spain (pp. 6107-6116). (EDULEARN23 Proceedings; No. 2023). IATED Academy. https://doi.org/10.21125/edulearn.2023.1594

Henriques, R., Oliveira, L., Santos, R., & Albuquerque, C. (2023)

Implementing Team-Based Learning In Data Science Education: Enhancing Student Satisfaction And Performance. In L. Gómez Chova, C. González Martínez, & J. Lees (Eds.), 15th  International Conference on Education and New Learning Technologies July 3rd  -5th  , 2023 Palma, Spain (pp. 6720-6729). (EDULEARN23 Proceedings; No. 2023). IATED Academy. https://doi.org/10.21125/edulearn.2023.1770

Pesovski, I., Santos, R., Trajkovik, V., & Henriques, R. (2023)

Comparing Perception and Reality: Exploring Test Complexity and Student Performance in Higher Education. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th  International Conference of Education, Research and Innovation (pp. 6654-6660). (ICERI Proceedings). IATED Academy. https://doi.org/10.21125/iceri.2023.1660

Santos, R. M. C., & Henriques, R. (2023)

Predicting student performance from Moodle logs in higher education: A course-agnostic approach. In M. Carmo (Ed.), Education and New Developments 2023 (Vol. 2, pp. 77-81). Science Press. https://end-educationconference.org/wp-content/uploads/2023/06/Education-and-New-Developments_2023_Vol_II.pdf

Santos, R., & Henriques, R. (2023)

Grouping Bachelor's Students According To Their Moodle Interaction Profiles: A K-Means Clustering Approach. In L. Gómez Chova, C. González Martínez, & J. Lees (Eds.), 15th  International Conference on Education and New Learning Technologies July 3rd  -5th  , 2023 Palma, Spain (pp. 7383-7389). (EDULEARN23 Proceedings; No. 2023). IATED Academy. https://doi.org/10.21125/edulearn.2023.1920

Albuquerque, C., Henriques, R., & Castelli, M. (2022)

A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps. Scientific Reports, 12, 1-12. [17678]. https://doi.org/10.21203/rs.3.rs-1862362/v1, https://doi.org/10.1038/s41598-022-21574-w

Henriques, R., Ferreira, A., & Castelli, M. (2022)

A Use Case of Patent Classification Using Deep Learning with Transfer Learning. Journal of Data and Information Science, 7(3), 49-70. https://doi.org/10.2478/jdis-2022-0015

Principe, V. A., de Souza Vale, R. G., de Castro, J. B. P., Carvano, L. M., Henriques, R. A. P., Lobo, V. J. D. A. E. S., & de Alkmim Moreira Nunes, R. (2022)

A computational literature review of football performance analysis through probabilistic topic modeling. Artificial Intelligence Review, 55(2). [Advanced online publication on 4 April 2021]. https://doi.org/10.1007/s10462-021-09998-8

Victorino, G., Bandeira, R., Painho, M., Henriques, R., & Coelho, P. S. (2022)

Rethinking the Campus Experience in a Post-COVID World: A Multi-Stakeholder Design Thinking Experiment. Sustainability (Switzerland), 14(13), 1-13. [7655]. https://doi.org/10.3390/su14137655

Albuquerque, C., Vanneschi, L., Henriques, R., Castelli, M., Póvoa, V., Fior, R., & Papanikolaou, N. (2021)

Object detection for automatic cancer cell counting in zebrafish xenografts. PLoS ONE, 16(11), 1-28. [e0260609]. https://doi.org/10.1371/journal.pone.0260609

Silva, M. I., & Henriques, R. (2021)

TripMD: Driving patterns investigation via motif analysis. Expert Systems with Applications, 184, 1-12. [115527]. https://doi.org/10.1016/j.eswa.2021.115527

G. Victorino, R. Henriques (2021)

DESIGN OF LEARNING ENVIRONMENTS: A ROOM AFFECTING WHAT WE DO AND HOW WE FEEL. In EDULEARN21 Proceedings, pp. 10849-10859. (13th  International Conference on Education and New Learning Technologies, Dates: 5-6 July, 2021 (online)). ISBN: 978-84-09-31267-2. ISSN: 2340-1117. doi: 10.21125/edulearn.2021.2256

Victorino, G., Henriques, R., & Bandeira, R. (2021)

Teaching Design Thinking in times of COVID-19: an online learning experience. In J. Domenech, P. Merello, & E. D. L. Poza (Eds.), 7th  International Conference on Higher Education Advances (HEAd’21) (pp. 263-270). Editorial Universitat Politècnica de València. https://doi.org/10.4995/HEAD21.2021.13621

Castelli, M., Dobreva, M., Henriques, R., & Vanneschi, L. (2020)

Predicting Days on Market to Optimize Real Estate Sales Strategy. Complexity, 2020, 1-22. [4603190]. https://doi.org/10.1155/2020/4603190

Pina, A. L. F., Patarrao, R. S., Ribeiro, R. T., Penha-Goncalves, C., Raposo, J. F., Gardete-Correia, L., Duarte, R., M. Boavida, J., L. Medina, J., Henriques, R., & Macedo, M. P. (2020)

Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia. Journal of Clinical Medicine, 9(8), [2588]. https://doi.org/10.3390/jcm9082588

Pina, A., Helgadottir, S., Mancina, R. M., Pavanello, C., Pirazzi, C., Montalcini, T., … Romeo, S. (2020)

Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning. European Journal of Preventive Cardiology. [Advanced online publication February 4, 2020]. Doi: https://doi.org/10.1177/2047487319898951

Silva, M. I & Henriques, R. (2020)

Finding manoeuvre motifs in vehicle telematics. Accident Analysis & Prevention, 138,(April), 105467. https://doi.org/10.1016/j.aap.2020.105467

Pina, A., Macedo, M. P., & Henriques, R. (2020)

Clustering Clinical Data in R. Methods In Molecular Biology (Clifton, N.J.), 2051, 309-343. https://doi.org/10.1007/978-1-4939-9744-2_14

Alceo, P., & Henriques, R. (2020)

Beat the Streak: Prediction of MLB Base Hits Using Machine Learning. In A. Fred, A. Fred, A. Salgado, D. Aveiro, J. Dietz, J. Bernardino, & J. Filipe (Eds.), Knowledge Discovery, Knowledge Engineering and Knowledge Management: 11th  International Joint Conference, IC3K 2019, Revised Selected Papers (pp. 108-133). (Communications in Computer and Information Science; Vol. 1297). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-66196-0_6

Silva, M. I., & Henriques, R. (2020)

Exploring time-series motifs through DTW-SOM. In 2020 International Joint Conference on Neural Networks, IJCNN: 2020 Conference Proceedings (pp. 1-8). [9207614] (Proceedings of the International Joint Conference on Neural Networks). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IJCNN48605.2020.9207614

Campos, S. R. M. D., Henriques, R., & Yanaze, M. H. (2019)

Knowledge discovery through higher education census data. Technological Forecasting and Social Change, 149, [119742]. https://doi.org/10.1016/j.techfore.2019.119742

Costa, A., Guerreiro, J., Moro, S., & Henriques, R. (2019)

Unfolding the characteristics of incentivized online reviews. Journal of Retailing and Consumer Services, 47, 272-281. DOI: 10.1016/j.jretconser.2018.12.006

Hajek, P., Henriques, R., Castelli, M., & Vanneschi, L. (2019)

Forecasting performance of regional innovation systems using semantic-based genetic programming with local search optimizer. Computers and Operations Research, 106(June), 179-190. [advanced online on 7 February 2018]https://doi.org/10.1016/j.cor.2018.02.001 . Doi: https://doi.org/10.1016/j.cor.2018.02.001

Santa, F., Henriques, R., Torres-Sospedra, J., & Pebesma, E. (2019)

A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments. Sustainability (Switzerland), 11(3), [595]. DOI: 10.3390/su11030595

Alceo, P., & Henriques, R. (2019)

Sports Analytics: maximizing precision in predicting MLB base hits. In A. Fred, & J. Filipe (Eds.), Proceedings of the 11th  International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) (pp. 190-201). (IC3K 2019 - Proceedings of the 11th  International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management; Vol. 1). SciTePress. https://doi.org/10.5220/0008362201900201

De Campos, S. R. M., & Henriques, R. (2019)

THE BRAZILIAN HIGHER EDUCATION: THE UNDERGRADUATE COURSES IN LIGHT OF ITS RECENT POLICIES. In M. Carmo (Ed.), Education and New Developments 2019 (Vol. II, pp. 371-375). InScience Press. https://doi.org/10.36315/2019v2end084

Dias, H., & Henriques, R. (2019)

Augmenting data warehousing architectures with Hadoop. In Proceedings of the 19th  Portuguese Association of Information Systems Conferemce: digital disruption: living between data science, IoT and ... people (pp. 27). Associação Portuguesa de Sistemas de Informação.

Duarte, A., Henriques, R., & Ribeiro, S. (2019)

Use of different optimization algorithms to define service areas of police stations in Portugal . In Evidence-based territorial policymaking: formulation, implementation and evaluation of policy: 26th  APDR Congress Proceedings (pp. 108-115). Associacao Portuguesa para o Desenvolvimento Regional (APDR).

Joshi, A., Pebesma, E., Henriques, R., & Appel, M. (2019)

Scidb based framework for storage and analysis of remote sensing big data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(5/W3), 43-47. https://doi.org/10.5194/isprs-archives-XLII-5-W3-43-2019

Bação, F. J. F. L., Henriques, R., & Antunes, J. (2017)

Contribution Towards Smart Cities: Exploring Block Level Census Data for the Characterization of Change in Lisbon. In M. Behnisch, & G. Meinel (Eds.), Trends in Spatial Analysis and Modelling: Decision-Support and Planning Strategies (pp. 59-73). [Chapter 4] (Geotechnologies and the Environment; Vol. 19). Springer. https://doi.org/10.1007/978-3-319-52522-8_4

Beretta, S., Castelli, M., Goncalves, I., Henriques, R., & Ramazzotti, D. (2018)

Learning the Structure of Bayesian Networks: A Quantitative Assessment of the Effect of Different Algorithmic Schemes. Complexity, [1591878]. DOI: 10.1155/2018/1591878

Galvão, M. & Henriques, R. (2018)

Forecasting Movie Box Office Profitability. Journal of Information Systems Engineering & Management, 3(3), 22. https://doi.org/10.20897/jisem/2658

Ribeiro, S., Cabral, P., Henriques, R., Bravo, J., Rodrigues, T., & Painho, M. (2018)

Modelação do crescimento urbano para a distribuição eficaz das forças de segurança: o caso português. PROELIUM – Revista da Academia Militar, 7(14), 45-68.

Ribeiro, S. & Henriques, R. (2018)

Aplicação de Self-Organizing Maps na análise da criminalidade em Portugal, 2011,2016. In T. Rodrigues, & M. Painho (Eds.), Modelos preditivos e segurança pública (pp. 253-280). Porto: Fronteira do Caos. ISBN: 978-989-54148-7-1

Ribeiro, S., Henriques, R. & Castelli, M. (2018)

Modelo de otimização. In T. Rodrigues, & M. Painho (Eds.), Modelos preditivos e segurança pública (pp. 281-302). Porto: Fronteira do Caos. ISBN: 978-989-54148-7-1

Bernardo, I., Henriques, R., & Lobo, V. (2018)

Social market: Stock market and twitter correlation. In Intelligent Decision Technologies 2017: Proceedings of the 9th  KES International Conference on Intelligent Decision Technologies, KES-IDT 2017 (pp. 341-356) (advanced online publication on 26 May 2017). (Smart Innovation, Systems and Technologies; Vol. 73). DOI: 10.1007/978-3-319-59424-8_32

de Campos, S. R. M., & Henriques, R. (2018)

The knowledge discovery through the student's higher education census data. In Proceedings of CISTI 2018: 13th  Iberian Conference on Information Systems and Technologies [Memorias de la CISTI 2018: 13a Conferencia Iberica de Sistemas y Tecnologias de Informacion] (Vol. 2018, pp. 1-6). IEEE Computer Society. DOI: 10.23919/CISTI.2018.8399164

Galvao, M., & Henriques, R. (2018)

Forecasting model of a movie's profitability. In Proceedings of CISTI 2018: 13th  Iberian Conference on Information Systems and Technologies [Memorias de la CISTI 2018: 13a Conferencia Iberica de Sistemas y Tecnologias de Informacion] (Vol. 2018, pp. 1-6). IEEE Computer Society. DOI: 10.23919/CISTI.2018.8399184

Henriques, R., & Feiteira, I. (2018)

Predictive modelling: Flight delays and associated factors, Hartsfield-Jackson Atlanta international airport. Procedia Computer Science, 138, 638-645. CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN/HCist, 21-23 november 2018, Lisbon, Portugal. https://doi.org/10.1016/j.procs.2018.10.085

Tsakalos, V., & Henriques, R. (2018)

Sentiment classification using N-ary tree-structured gated recurrent unit networks. In A. Fred, & J. Filipe (Eds.), Proceedings of the 10th  International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) (Vol. 1, pp. 149-154). (IC3K 2018; Seville; Spain; 18-September) Scitepress. ISBN: 978-989-758-330-8. DOI: 10.5220/0006894201490154

Adeoluwa Akande, Ana Cristina Costa, Jorge Mateu and Roberto Henriques (2017)

Geospatial Analysis of Extreme Weather Events in Nigeria (1985–2015) Using Self-Organizing Maps. Advances in Meteorology, 2017, Article ID 8576150, 11 p. https://doi.org/10.1155/2017/8576150

de Campos, S. R. M., Henriques, R., & Yanaze, M. H. (2017)

Higher education in Brazil: an exploratory study based on supply and demand conditions. Universal Access in the Information Society, 1-23 (advanced online publication on 24 april 2017). DOI: 10.1007/s10209-017-0537-9

Leonardo Vanneschi; Roberto Henriques; Mauro Castelli (2017)

Multi-objective genetic algorithm with variable neighbourhood search for the electoral redistricting problem. Swarm and Evolutionary Computation, 36, 37-51. https://doi.org/10.1016/j.swevo.2017.04.003

Petr Hajek & Roberto Henriques (2017)

Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud - A Comparative Study of Machine Learning Methods. Knowledge-Based Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001

Petr Hajek & Roberto Henriques (2017)

Modelling innovation performance of European regions using multi-output neural networks. PLoS ONE 12(10): e0185755. doi: https://doi.org/10.1371/journal.pone.0185755

Vitor Principe, Luiz Octáio Gavião, Roberto Henriques, Victor Lobo, Gilson Brito Alves Lima and Annibal Parracho Sant’anna (2017)

Multicriteria Analysis of Football Match Performances: Composition Of Probabilistic Preferences Applied To The English Premier League 2015/2016. Pesquisa Operacional, 37 (2), 333-363. DOI: 10.1590/0101-7438.2017.037.02.0333

Monteiro, R. Cabral, P. D. C. B., & Henriques, R. (2017)

Crawling public massive data to solve air traffic data issues. In Atas da 12a Conferencia Iberica de Sistemas e Tecnologias de Informacao, CISTI 2017 / Proceedings of the 12th  Iberian Conference on Information Systems and Technologies, CISTI 2017 [7976006] IEEE Computer Society. DOI: 10.23919/CISTI.2017.7976006

Ribeiro, S., Caineta, J., Costa, A. C., Henriques, R., & Soares, A. (2016)

Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research, 171, 147-158. doi: http://dx.doi.org/10.1016/j.atmosres.2015.11.014

De Campos, S. R. M., Henriques, R., & Yanaze, M. H. (2016)

Governance of higher education institutions in brazil: An exploratory study based on supply and demand conditions. Paper presented at the Advances in Intelligent Systems and Computing.

Castelli, M., Henriques, R., & Vanneschi, L. (2015)

A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing, 154, 200-207. doi: 10.1016/j.neucom.2014.12.003

Hajek, P., Henriques, R., & Hajkova, V. (2014)

Visualising components of regional innovation systems using self-organizing maps-Evidence from European regions. [Article]. Technological Forecasting and Social Change, 84, 197-214. doi: 10.1016/j.techfore.2013.07.013

Monteiro, V., Henriques, R., Painho, M., & Vaz, E. (2014)

Sensing World Heritage. In B. Murgante, S. Misra, A. C. Rocha, C. Torre, J. Rocha, M. Falcão, D. Taniar, B. Apduhan & O. Gervasi (Eds.), Computational Science and Its Applications – ICCSA 2014 (Vol. 8580, pp. 404-419): Springer International Publishing.

Fernandes, L., Henriques, R., & Lobo, V. (2014)

Selection of instances in Condition Based Monitoring: the case of aircraft engines. Paper presented at the Maintenance Performance Measurement and Management (MPMM) Conference 2014, Coimbra.

Henriques, R., Bacao, F., & Lobo, V. (2012)

Exploratory geospatial data analysis using the GeoSOM suite. Computers Environment and Urban Systems, 36(3), 218-232. doi: 10.1016/j.compenvurbsys.2011.11.003

Henriques, R., Lobo, V., & Bação, F. (2012)

Spatial Clustering Using Hierarchical SOM. In M. Johnsson (Ed.), Applications of Self-Organizing Maps: InTech.

Painho, M., Henriques, R., Oliveira, T. M., Seabra, I., Leitão, J., Laginha, C., & Neves, M. (2012)

Outputs from SIGGESC: bus lines management geographic information system. Paper presented at the ESRI International Conference, California.

Henriques, R., Bacao, F., & Lobo, V. (2009)

Carto-SOM: cartogram creation using self-organizing maps. International Journal of Geographical Information Science, 23(4), 483-511.

Henriques, R., Bação, F., & Lobo, V. (2009)

Cartograms, Self-Organizing Maps, and Magnification Control. Paper presented at the Advances in Self-Organizing Maps 7th  International Workshop, WSOM 2009, St. Augustine, USA.

Henriques, R., Bacao, F., & Lobo, V. (2009)

GeoSOM Suite: A Tool for Spatial Clustering. In O. Gervasi, D. Taniar, B. Murgante, A. Lagana, Y. Mun & M. L. Gavrilova (Eds.), Computational Science and Its Applications - Iccsa 2009, Pt I (Vol. 5592, pp. 453-466). Berlin: Springer-Verlag Berlin.

Henriques, R., Bacao, F., & Lobo, V. (2009)

UAV path planning based on event density detection. In S. Dragicevic, D. Roman & V. Tanasescu (Eds.), International Conference on Advanced Geographic Information Systems and Web Services: Geows 2009, Proceedings (pp. 112-116). Los Alamitos: IEEE Computer Soc.